

5 O 252 B ... O 52...

KQI SERIES

OVERVIEW

KQI: series of impulse diffusers generally used in rooms with a ceilings about four meters high. They are characterized by a horizontal throw and elevated "Coanda effect". The impulse air flow perfectly follows the ceiling, creating an extraction effect of the air present in the room. This flow, mixing gradually with the air creates a high inductive effect ensuring optimum comfort characterized by temperature uniformity in the environment and lack of perceived air currents inside the occupied zone.

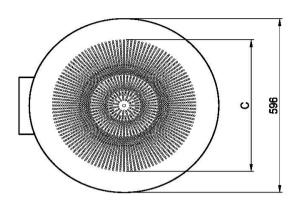
The perforated front plate allows easy and quick cleaning of the diffuser thereby enabling the use also in hygiene-controlled environments

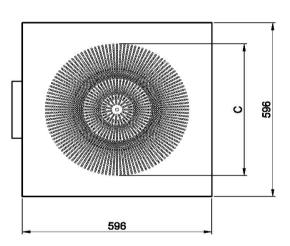
CHARACTERISTICS:

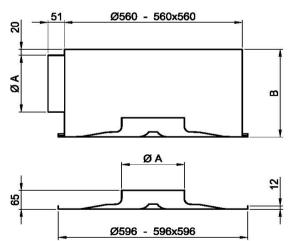
Perforated frontal panel made of carbon steel sheet with white RAL 9010 or RAL 9003 epoxy paint.

Rear aluminium plate, powder painted epoxy black RAL 9005 and galvanized carbon steel plenum

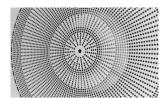
The installation can be made using suspension rods in open field, fitted within plasterboard ceilings or simply resting on the support structure in modular ceilings.


FIELD OF USE


KQI diffusers are suitable for false ceiling installation in rooms with a height between 2.5 and 6 meters such as shops, supermarkets, meeting rooms, corridors, surgeries and similar.


UNSUITABLE ENVIRONMENTS

KQI_ENG_25_00.xlsx


Painted carbon steel products are not suitable for installation in high humidity environments and in environments with potentially explosive atmospheres or containing dust or vapours of corrosive substances.

Size	Α	В	С	Ak		
	[mm]	[mm]	[mm]	[m²]		
125	123	230	296	0,0212		
160	158	260	368	0,0299		
200	198	300	452	0,0463		
250	248	341	524	0,0805		

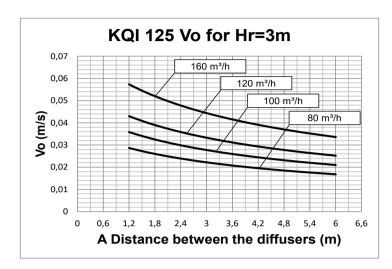
KQI **SERIES**

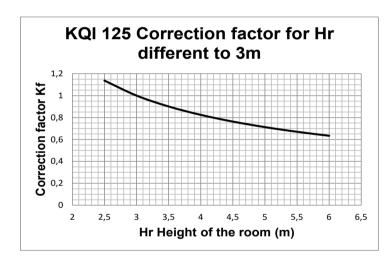
QUICK SELECTION

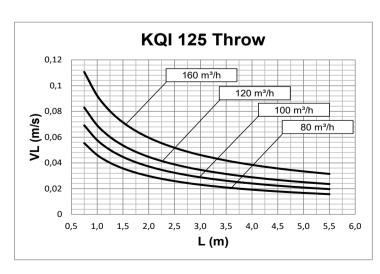
		Air flow rate																		
Model		m³/h	40	75	100	125	150	175	200	250	300	350	400	450	500	550	600	650	700	750
$A_k [m^2]$		l/s	(11)	(21)	(28)	(35)	(42)	(49)	(56)	(69)	(83)	(97)	(111)	(125)	(139)	(153)	(167)	(181)	(194)	(208)
	L_{WA}	[dB(A)	<20	30	36	41	45	48												
KQI 125	V_k	[m/s]	0,5	1	1,3	1,6	2	2,3												
(0,021)	Δp_{t}	[Pa]	3	11	19	30	44	60												
	L 0,12	[m]	0,1	0,2	0,3	0,5	0,6	0,8												
	L_{WA}	[dB(A)			<20	<20	24	28	32	39	44	49								
KQI 160	V_k	[m/s]			0,9	1,2	1,4	1,6	1,9	2,3	2,8	3,2								
(0,03)	Δp_{t}	[Pa]			6	10	14	19	25	37	54	74								
	L 0,12	[m]			1,8	2	2,3	2,5	2,8	3,2	3,6	4								
	L_WA	[dB(A)						<20	<20	23	29	35	40	44	47					
KQI 200	V_k	[m/s]						1,1	1,2	1,5	1,8	2,1	2,4	2,7	3					
(0,046)	Δp_{t}	[Pa]						6	8	12	17	24	31	40	49					
	L 0,12	[m]						1,1	1,3	1,8	2,3	2,9	3,5	4,2	4,8					
	L_WA	[dB(A)								<20	21	26	30	34	37	40	43	46	48	50
KQI 250	V_k	[m/s]								0,9	1	1,2	1,4	1,6	1,7	1,9	2,1	2,2	2,4	2,6
(0,08)	Δp_{t}	[Pa]								8	12	17	22	28	34	42	49	58	67	77
	L 0,12	[m]								1,3	1,6	1,9	2,2	2,6	2,9	3,2	3,6	3,9	4,2	4,6

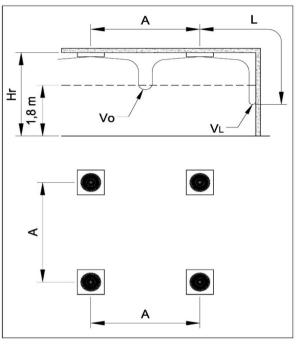
30 ≤ LwA < 40 10 ≤ LwA < 30 40 ≤ LwA < 50

Data valid for:


- Supply air
- Isotherm conditions
- Throw with ceiling effect


- Terminology:
 A_k = effective free area
- V_k = effective face velocity
- Δpt = total pressure loss L_{WA} = sound power level
- $L_{0,12}$ = throw to terminal velocity at 0,12 m/s

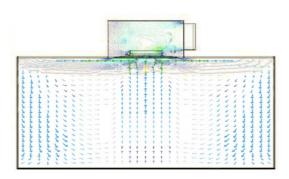


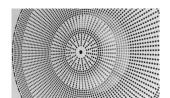

KQI SERIES

PERFORMANCE KQI-125

Data obtained operating in isothermal conditions in accordance with the international standard:

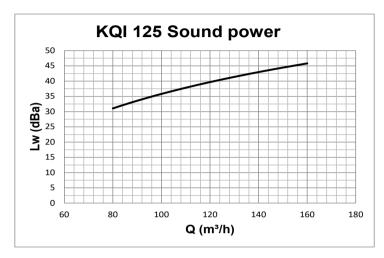
ISO 5219 1984: Air distribution and air diffusion Laboratory. Aerodynamic testing and rating of air


A (m) distance between the diffusers Vo (m/s) speed at the limit of the occupied zone L (m) horizontal distance in metres from the centre of the diffuser


VL (m/s) maximum speed in the air stream

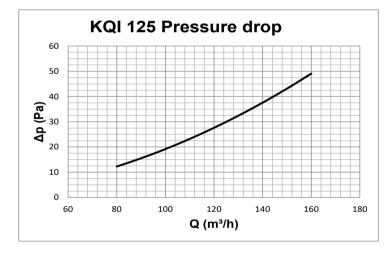
For Hr different from 3m:

Vo(h) = VoxKf

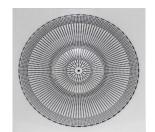

terminal devices.

KQI SERIES

PERFORMANCE KQI-125

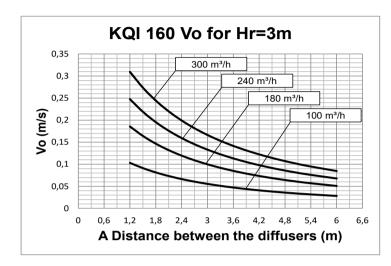


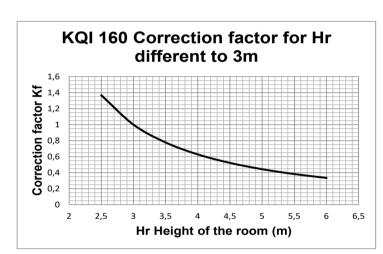
Data measured in reverberation room in accordance with international standards:

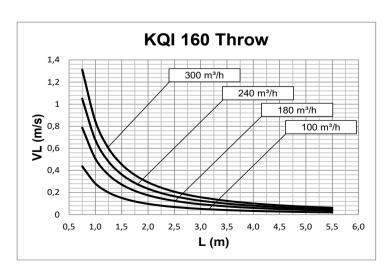

ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms

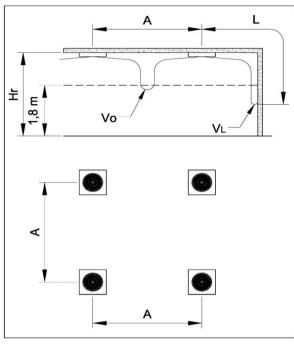
ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.

The data presented does not consider the attenuation given by the area of installation. This attenuation is normally between 6 and 10 dBA and is determined by the room size, the shape of the environment and the interior features.




Data obtained operating in accordance with the international standard:

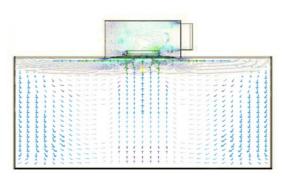


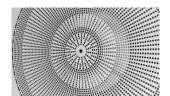

KQI SERIES

PERFORMANCE KQI-160

Data obtained operating in isothermal conditions in accordance with the international standard:

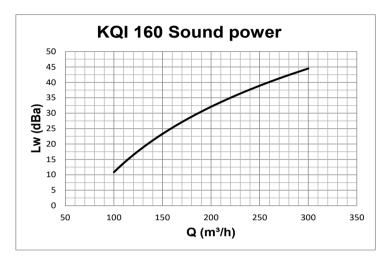
ISO 5219 1984: Air distribution and air diffusion Laboratory. Aerodynamic testing and rating of air


A (m) distance between the diffusers Vo (m/s) speed at the limit of the occupied zone L (m) horizontal distance in metres from the centre of the diffuser


VL (m/s) maximum speed in the air stream

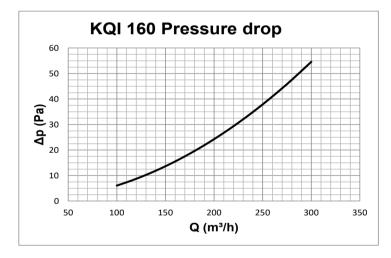
For Hr different from 3m:

Vo(h) = VoxKf


terminal devices.

KQI SERIES

PERFORMANCE KQI-160

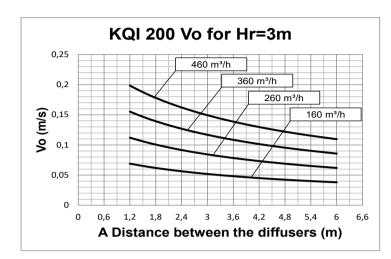


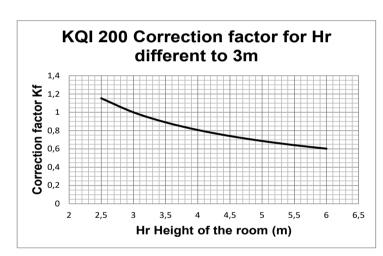
Data measured in reverberation room in accordance with international standards:

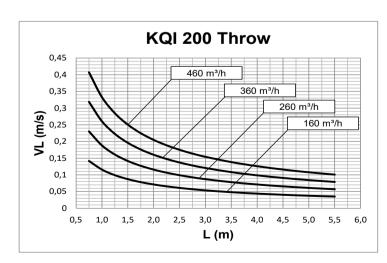
ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms

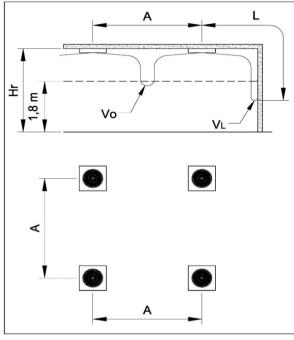
ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.

The data presented does not consider the attenuation given by the area of installation. This attenuation is normally between 6 and 10 dBA and is determined by the room size, the shape of the environment and the interior features.



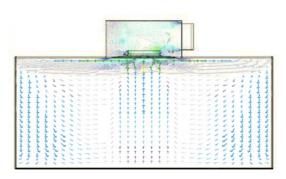

Data obtained operating in accordance with the international standard:

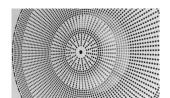



KQI SERIES

PERFORMANCE KQI-200

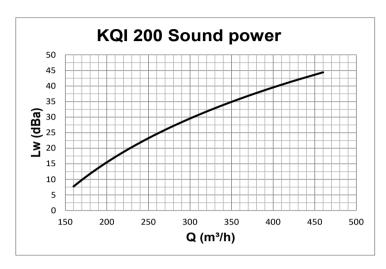
Data obtained operating in isothermal conditions in accordance with the international standard:


ISO 5219 1984: Air distribution and air diffusion Laboratory. Aerodynamic testing and rating of air terminal devices.


A (m) distance between the diffusers Vo (m/s) speed at the limit of the occupied zone L (m) horizontal distance in metres from the centre of the diffuser

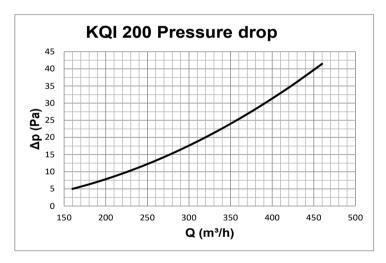
VL (m/s) maximum speed in the air stream

For Hr different from 3m:


Vo(h) = VoxKf

KQI SERIES

PERFORMANCE KQI-200

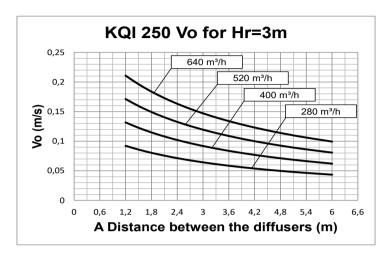


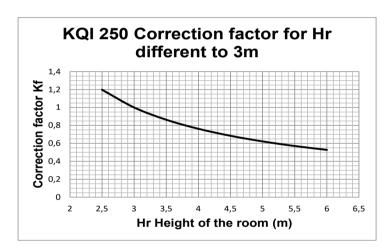
Data measured in reverberation room in accordance with international standards:

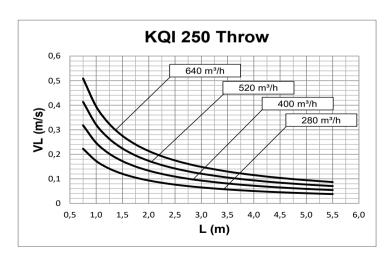
ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms

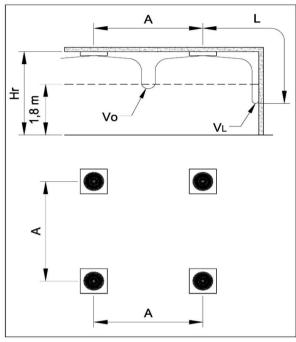
ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.

The data presented does not consider the attenuation given by the area of installation. This attenuation is normally between 6 and 10 dBA and is determined by the room size, the shape of the environment and the interior features.



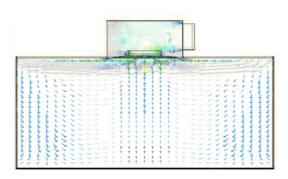

Data obtained operating in accordance with the international standard:

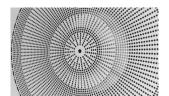



KQI SERIES

PERFORMANCE KQI-250

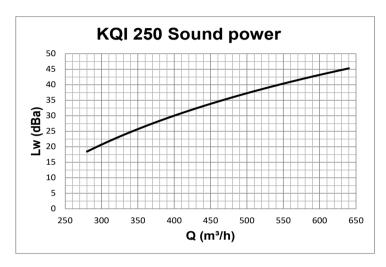
Data obtained operating in isothermal conditions in accordance with the international standard:


ISO 5219 1984: Air distribution and air diffusion Laboratory. Aerodynamic testing and rating of air


A (m) distance between the diffusers Vo (m/s) speed at the limit of the occupied zone L (m) horizontal distance in metres from the centre of the diffuser VL (m/s) maximum speed in the air stream

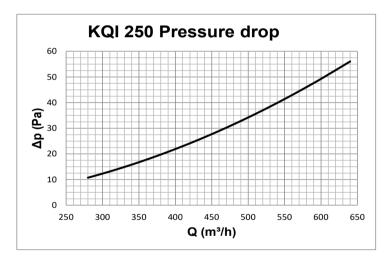
For Hr different from 3m:

Vo(h) = VoxKf

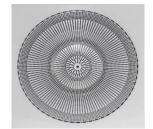

terminal devices.

KQI SERIES

PERFORMANCE KQI-250



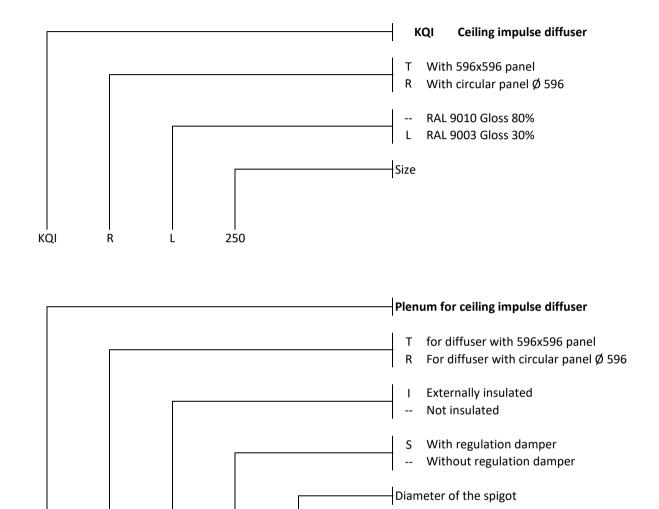
Data measured in reverberation room in accordance with international standards:


ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms

ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.

The data presented does not consider the attenuation given by the area of installation. This attenuation is normally between 6 and 10 dBA and is determined by the room size, the shape of the environment and the interior features.

Data obtained operating in accordance with the international standard:


PP82KQI

KQI_ENG_25_00.xlsx

CEILING IMPULSE DIFFUSERS

KQI SERIES

HOW TO ORDER

for correct operation, the air inlet diameter of the plenum must be the same of the nominal size of the diffuser

200