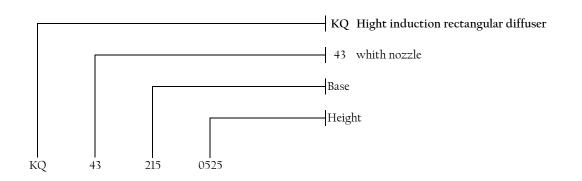
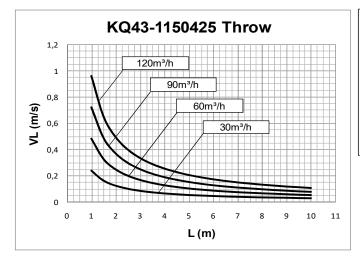
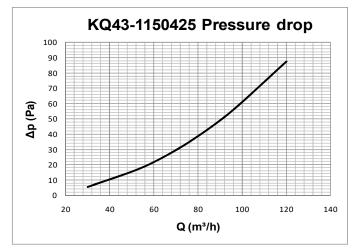
KQ-43 SERIES

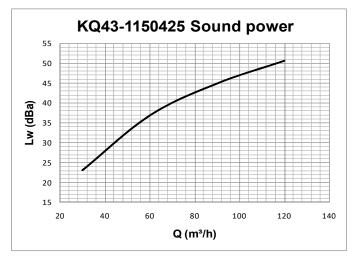

OVERVIEW

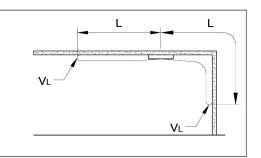
OVERVIEW:

These are high induction diffusers built similarly to the KQ42 models but rectangular in shape. Made in carbon steel with a an opoxy powder fihish in RAL 9010, with nozzles in policarbonate+ white ABS RAL 9010.


The installation is done using screws fixing to the sides.


Model	A mm	B mm	n° of nozzels	Ak m²	
KQ43-1150425	150	450	14	0,0036	
KQ43-1150525	150	550	18	0,0047	- B -
KQ43-1150625	150	650	22	0,0057	00000000
KQ43-1150825	150	850	30	0,0078	▼● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
KQ43-1151025	150	1050	38	0,0098	
KQ43-2150425	250	450	21	0,0055	в
KQ43-2150525	250	550	27	0,0070	
KQ43-2150625	250	650	33	0,0086	
KQ43-2150825	250	850	45	0,0116	
KQ43-2151025	250	1050	57	0,0147	
KQ43-3150425	350	450	35	0,0091	
KQ43-3150525	350	550	45	0,0116	000000000
KQ43-3150625	350	650	55	0,0142	
KQ43-3150825	350	850	75	0,0194	
KQ43-3151025	350	1050	95	0,0245	




KQ-43 SERIES

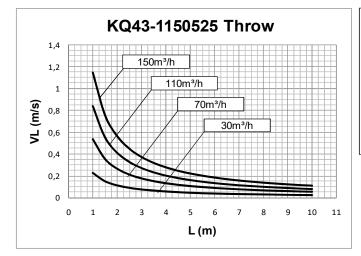
PERFORMANCE KQ43 1150425

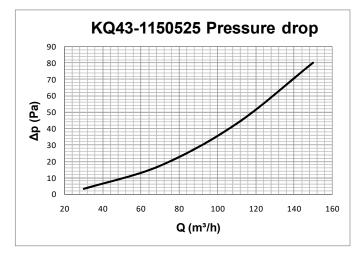
Data measured in isothermic conditions in accordance with international standards: ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices.

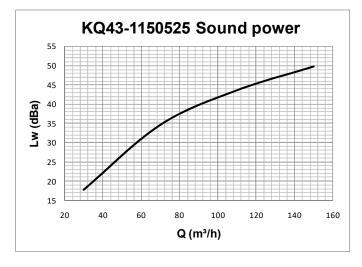
L (m) horizontal distance in metres from the centre of the diffuser U

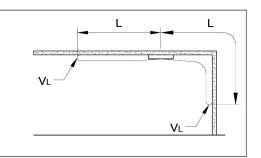
VL (m/s) maximum speed in the air stream

Data measured in reverberation room in accordance with international standards:


ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms


ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.




KQ-43 SERIES

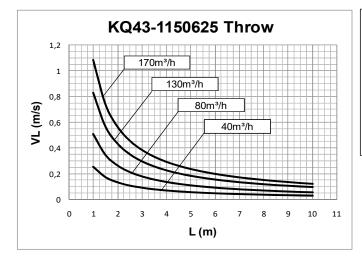
PERFORMANCE KQ43 1150525

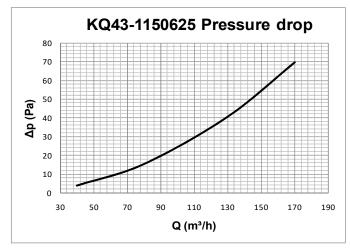
Data measured in isothermic conditions in accordance with international standards: ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices.

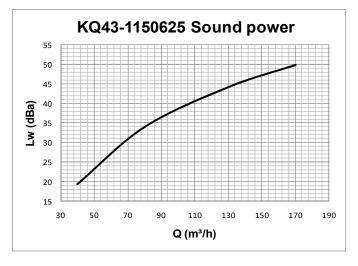
L (m) horizontal distance in metres from the centre of the diffuser $V_{\rm L}$ (() = 1 in the diffuser

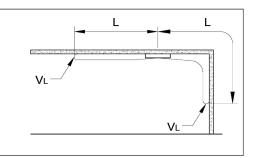
 $VL\,(m\!/\!s)$ maximum speed in the air stream

Data measured in reverberation room in accordance with international standards:


ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms


ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.




KQ-43 SERIES

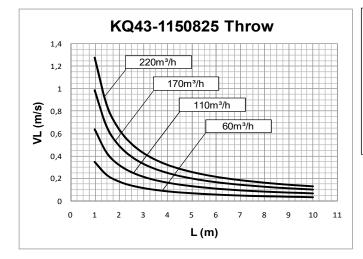
PERFORMANCE KQ43 1150625

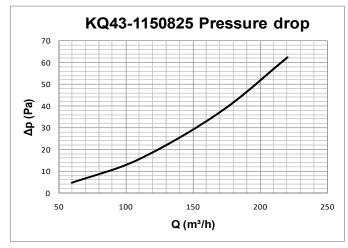
Data measured in isothermic conditions in accordance with international standards: ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices.

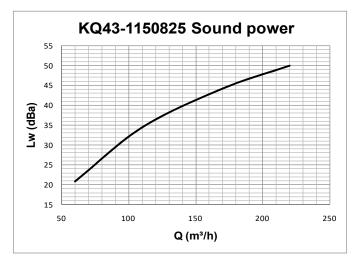
L (m) horizontal distance in metres from the centre of the diffuser $H_{1}(x) = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2}$

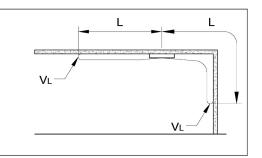
VL (m/s) maximum speed in the air stream

Data measured in reverberation room in accordance with international standards:


ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms


ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.




KQ-43 SERIES

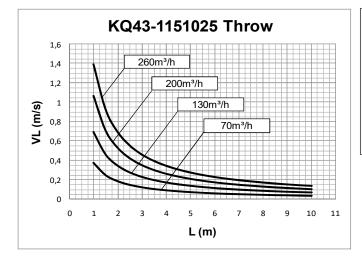
PERFORMANCE KQ43 1150825

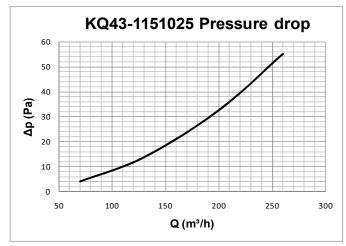
Data measured in isothermic conditions in accordance with international standards: ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices.

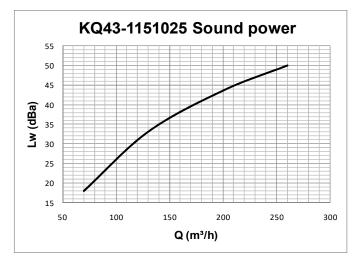
L (m) horizontal distance in metres from the centre of the diffuser $VL(c_1(c_2)) = \frac{1}{2} \int_{-\infty}^{\infty} dt dt$

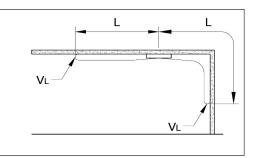
 $VL\,(m\!/\!s)$ maximum speed in the air stream

Data measured in reverberation room in accordance with international standards:


ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms


ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.




KQ-43 SERIES

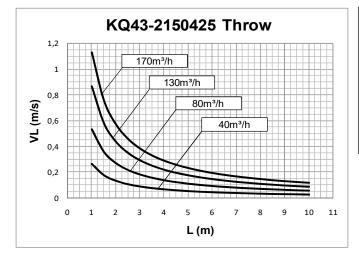
PERFORMANCE KQ43 1151025

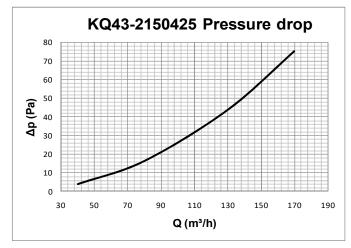
Data measured in isothermic conditions in accordance with international standards: ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices.

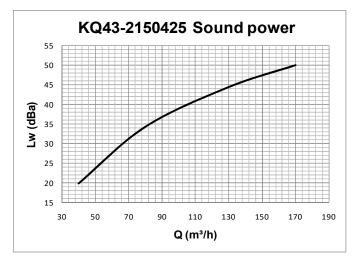
L (m) horizontal distance in metres from the centre of the diffuser U

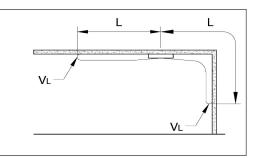
VL (m/s) maximum speed in the air stream

Data measured in reverberation room in accordance with international standards:


ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms


ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.




KQ-43 SERIES

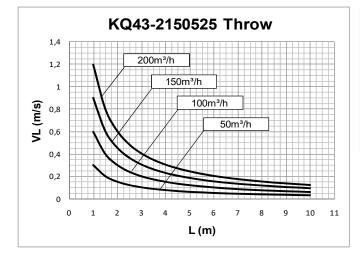
PERFORMANCE KQ43 2150425

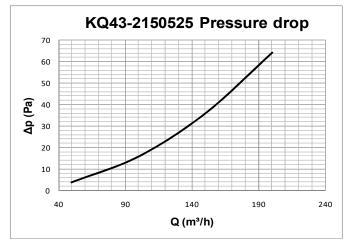
Data measured in isothermic conditions in accordance with international standards: ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices.

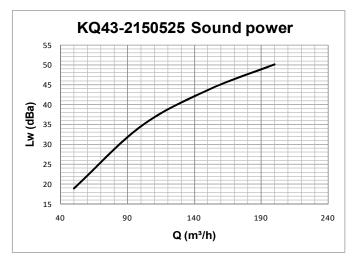
L (m) horizontal distance in metres from the centre of the diffuser $H_{1}(x) = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2}$

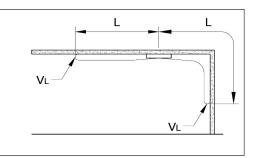
VL (m/s) maximum speed in the air stream

Data measured in reverberation room in accordance with international standards:


ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms


ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.




KQ-43 SERIES

PERFORMANCE KQ43 2150525

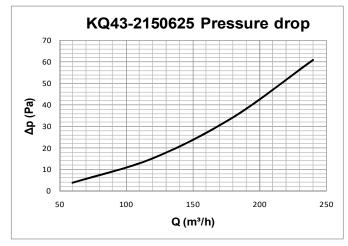
Data measured in isothermic conditions in accordance with international standards: ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices.

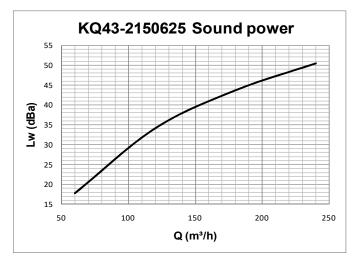
L (m) horizontal distance in metres from the centre of the diffuser $H_{1}(x) = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2}$

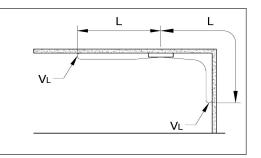
VL (m/s) maximum speed in the air stream

Data measured in reverberation room in accordance with international standards:

ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms


ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.




KQ-43 SERIES

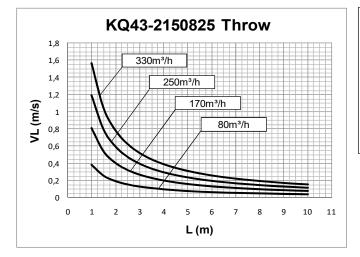
PERFORMANCE KQ43 2150625

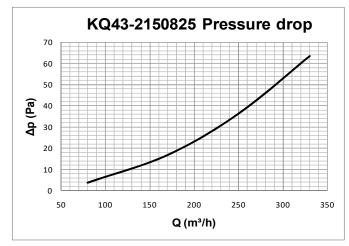
Data measured in isothermic conditions in accordance with international standards: ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices.

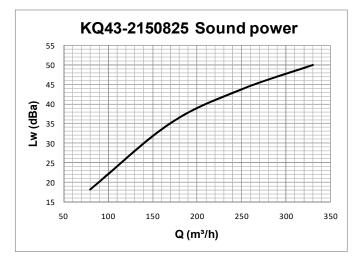
L (m) horizontal distance in metres from the centre of the diffuser $VL(c_1(z)) = \frac{1}{2} \int_{-\infty}^{\infty} dz \, dz$

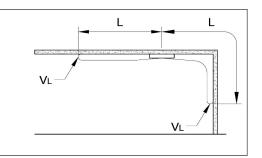
VL (m/s) maximum speed in the air stream

Data measured in reverberation room in accordance with international standards:


ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms


ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.




KQ-43 SERIES

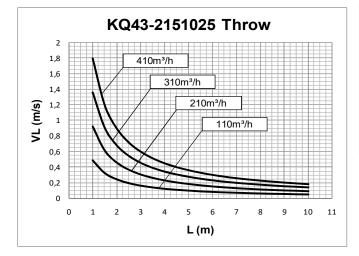
PERFORMANCE KQ43 2150825

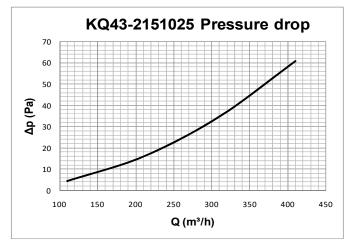
Data measured in isothermic conditions in accordance with international standards: ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices.

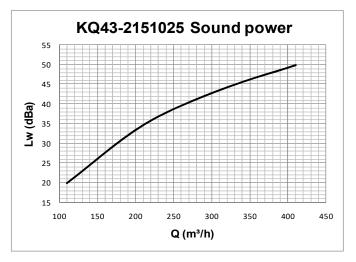
L (m) horizontal distance in metres from the centre of the diffuser U

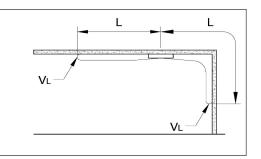
VL (m/s) maximum speed in the air stream

Data measured in reverberation room in accordance with international standards:


ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms


ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.




KQ-43 SERIES

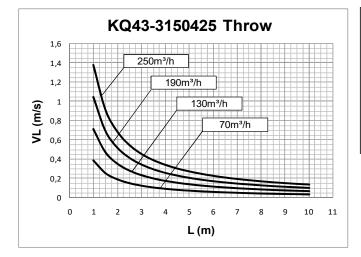
PERFORMANCE KQ43 2151025

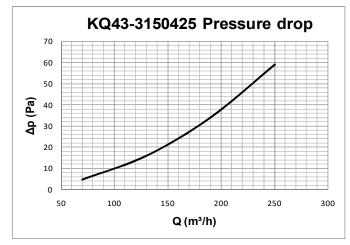
Data measured in isothermic conditions in accordance with international standards: ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices.

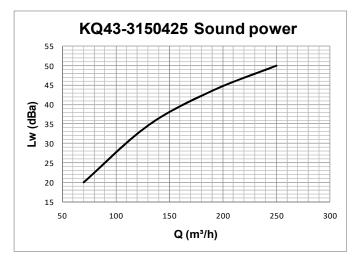
L (m) horizontal distance in metres from the centre of the diffuser $VL(c_1(z)) = \frac{1}{2} \int_{-\infty}^{\infty} dz \, dz$

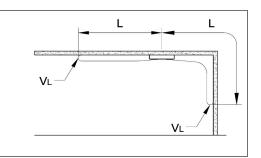
VL (m/s) maximum speed in the air stream

Data measured in reverberation room in accordance with international standards:


ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms


ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.




KQ-43 SERIES

PERFORMANCE KQ43 3150425

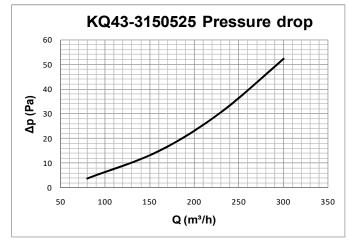
Data measured in isothermic conditions in accordance with international standards: ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices.

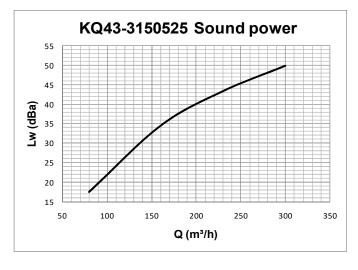
L (m) horizontal distance in metres from the centre of the diffuser $VL(c_1(z)) = \frac{1}{2} \int_{-\infty}^{\infty} dz \, dz$

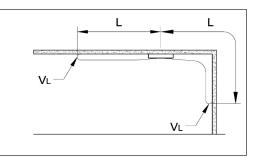
VL (m/s) maximum speed in the air stream

Data measured in reverberation room in accordance with international standards:

ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms


ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.




KQ-43 SERIES

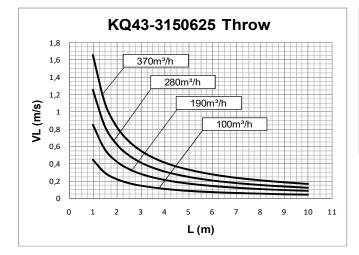
PERFORMANCE KQ43 3150525

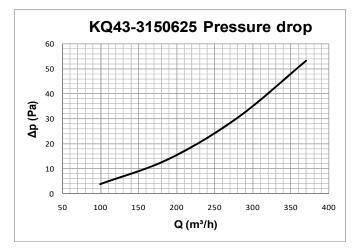
Data measured in isothermic conditions in accordance with international standards: ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices.

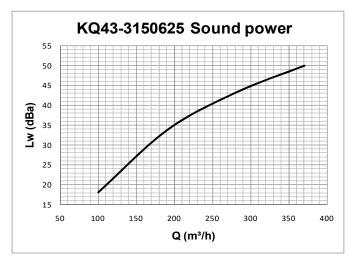
L (m) horizontal distance in metres from the centre of the diffuser $VL(c_1(z)) = \frac{1}{2} \int_{-\infty}^{\infty} dz \, dz$

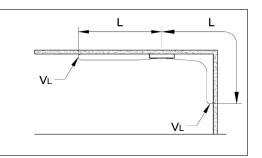
VL (m/s) maximum speed in the air stream

Data measured in reverberation room in accordance with international standards:


ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms


ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.




KQ-43 SERIES

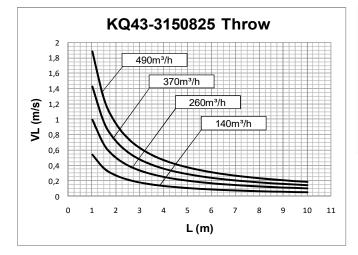
PERFORMANCE KQ43 3150625

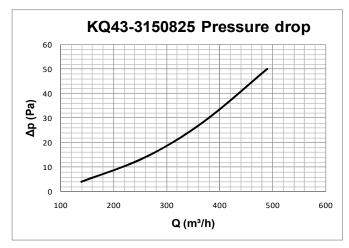
Data measured in isothermic conditions in accordance with international standards: ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices.

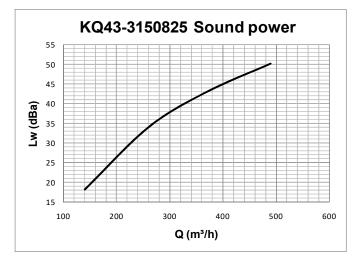
L (m) horizontal distance in metres from the centre of the diffuser $M_{\rm eff}$ (m (c) maximum an ed in the sin stream)

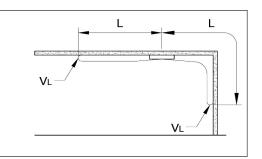
VL (m/s) maximum speed in the air stream

Data measured in reverberation room in accordance with international standards:


ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms


ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.




KQ-43 SERIES

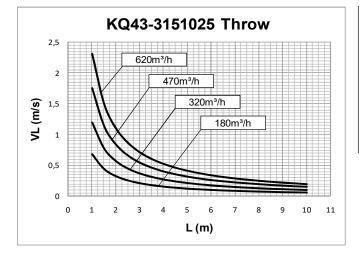
PERFORMANCE KQ43 3150825

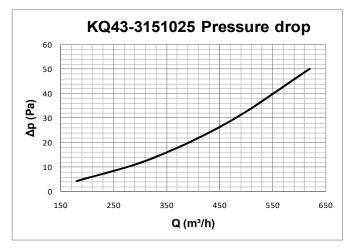
Data measured in isothermic conditions in accordance with international standards: ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices.

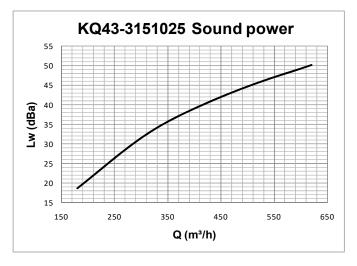
L (m) horizontal distance in metres from the centre of the diffuser $M_{\rm eff}$ (m (c) maximum an ed in the sin stream)

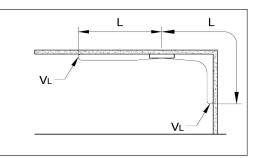
VL (m/s) maximum speed in the air stream

Data measured in reverberation room in accordance with international standards:


ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms


ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.




KQ-43 SERIES

PERFORMANCE KQ43 3151025

Data measured in isothermic conditions in accordance with international standards: ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices.

L (m) horizontal distance in metres from the centre of the diffuser $VL(c_1(z)) = \frac{1}{2} \int_{-\infty}^{\infty} dz \, dz$

VL (m/s) maximum speed in the air stream

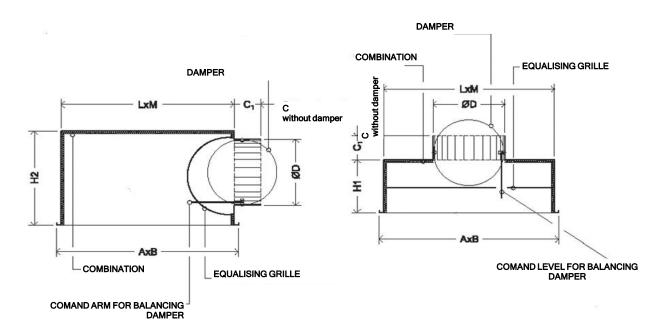
Data measured in reverberation room in accordance with international standards:

ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms

ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.

PP20 PP21 SERIES

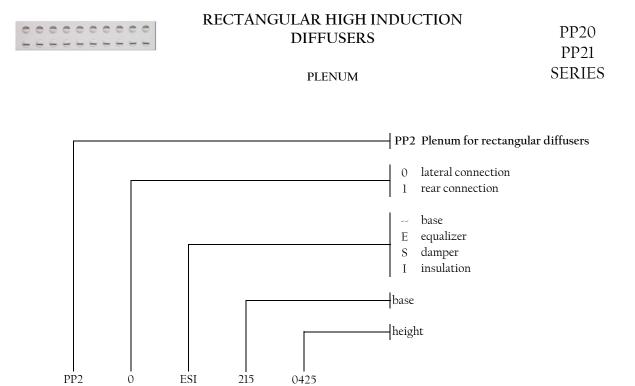
PLENUM


OVERVIEW :

The plenums for the KQ423 diffusers are in galvanised steel sheeting and can be supplied with damper and equaliser.

TECHNICAL DIAGRAMS :

PP 20 - PLENUM WITH LATERAL CONNECTION


PP 21 - PENUM WITH CONNECTION ABOVE

Plenum	Panel Dimensions	A x B	LxM	С	C1	ØD	Hl	H2	connecton material
PP20 - 115 x 425	150x450	144x444	ll4x4l4	65	65	96	200	300	steel
PP20 - 115 x 525	150x550	144x544	114x514	65	65	96	200	300	steel
PP20 - 115 x 625	150x650	144x644	114x614	60	90	121	200	300	ABS (*)
PP20 - 115 x 825	150x850	144x844	114x814	60	90	156	200	350	ABS (*)
PP20 - 115 x 1025	150x1050	144x1044	114x1014	60	90	196	200	350	ABS (*)
PP20 - 215 x 425	250x450	244x444	214x414	60	90	121	200	350	ABS (*)
PP20 - 215 x 525	250x550	244x544	214x514	60	90	156	200	350	ABS (*)
PP20 - 215 x 625	250x650	244x644	214x614	60	90	156	200	350	ABS (*)
PP20 - 215 x 825	250x850	244x844	214x814	60	90	196	200	350	ABS (*)
PP20 - 215 x 1025	250x1050	244x1044	214x1014	60	90	196	200	350	ABS (*)
PP20 - 315 x 425	350x450	344x444	314x414	60	90	156	200	350	ABS (*)
PP20 - 315 x 525	350x550	344x544	314x514	60	90	156	200	350	ABS (*)
PP20 - 315 x 625	350x650	344x644	314x614	60	90	196	200	350	ABS (*)
PP20 - 315 x 825	350x850	344x844	314x814	60	90	246	250	350	ABS (*)
PP20 - 315 x 1025	350x1050	344x1044	314x1014	60	90	246	250	350	ABS (*)

(*) Steel on request

