KLN SERIES

OVERVIEW CHARACTERISTICS APPLICATIONS

OVERVIEW:

The KLN series linear diffusers allow to manage high air flows with minimum pressure losses and generated noise power. They allow to fully make us of the induction principle, guaranteeing optimum comfort conditions, no noticeable air currents and temperature uniformity, even in large areas by positioning the diffusers along the perimeter of the ceiling.

The big innovation on the KLN series is the double flow deflector system: for horizontal throw 2 settings are available and fully adjustable on construction site. The first setting allow supply air horizontally with a big ceiling effect, while the second setting still allow horizontal air supply but for biggest air flow and low pressure loss and noise level.

CHARACTERISTICS AND OPERATION:

The KLN series diffusers are constructed from an aluminium diffuser body lots and a series of deflectors, also in aluminium, for the horizontal or vertical air though. The change of direction of the air through can be easily made without removing the diffuser.

APPLICATIONS:

The KLN series diffusers are ideal in application with a ceiling height between 3 and 6 meters like open space offices, commercial galleries hospital wards or hotel rooms.

VERSIONS:

Standard, with or without filter holder Fineline, with or without filter holder Fitted, without filter holder With panel, with or without filter holder

DIFFUSER INSTALLATION:

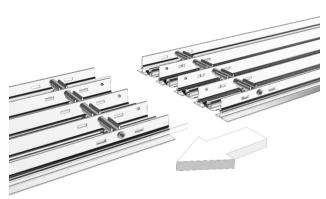
The KLN series diffusers are installed inside special plenum boxes, by suspension using quick fix connectors.

This solution allows a quick installation even at the end of work carried out on the building site.

Possibilty of installation in continuos lines.

FINISH :

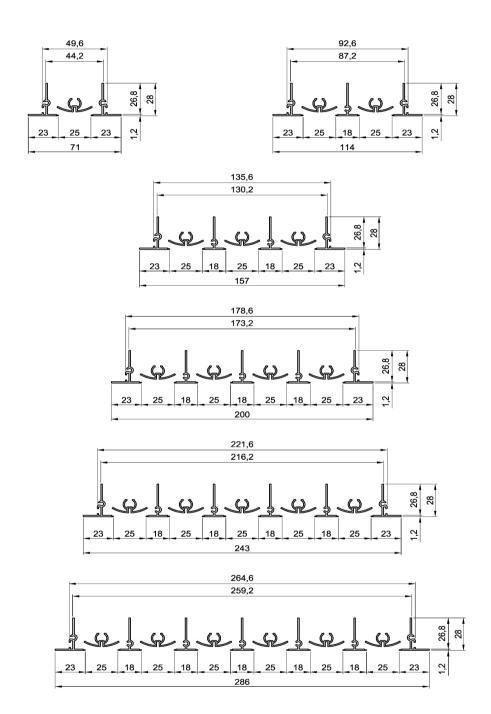
The KLN diffusers are constructed from an aluminium body anodized or painted white RAL 9010.


The deflectors cam be anodized, painted white RAL 9010 or black painted.

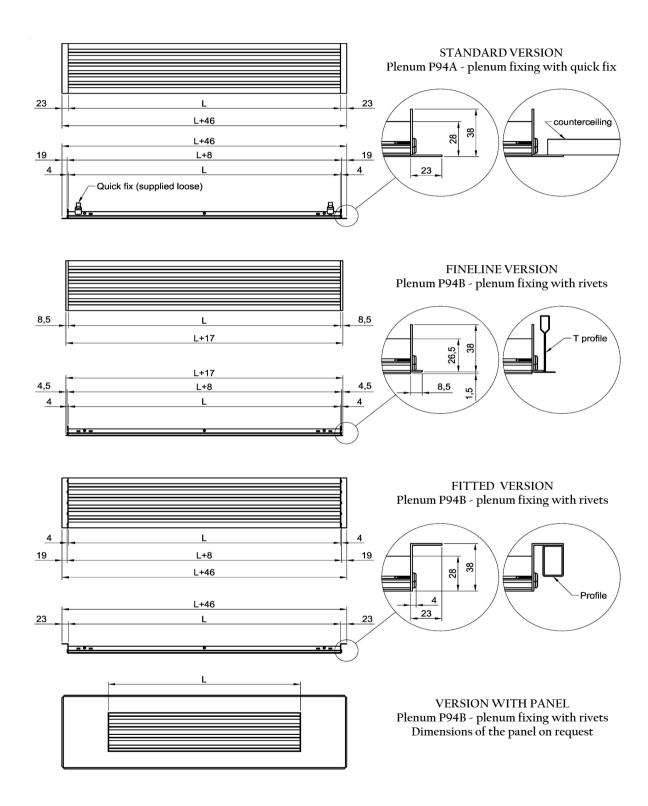
The KLN diffusers with panel are constructed from an aluminium body and a carbon steel panel.

Special finishes for the diffuser body can be made on request.

UNSUITABLE ENVIRONMENTS


The aluminum products are not suitable for installation in environments with an atmosphere containing corrosive substances for this material and in particular containing chlorine, such as swimming pools, spas and some types of food industries

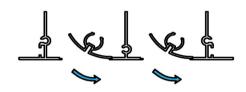
installation in continuos lines


OVERALL DIMENSIONS

Ak Efficient section for diffuser L=1 m (m²)						
1 slot 2 slots 3 slots 4 slots 5 slots 6 slots						
Horizontal throw high Coandă effect	0,00944	0,01888	0,02832	0,03776	0,04720	0,05664
Horizontal throw high air flow	0,01544	0,03088	0,04632	0,06176	0,0772	0,09264
Vertical throw	0,01500	0,03000	0,04500	0,06000	0,07500	0,09000

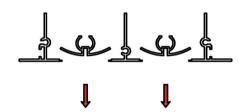
KLN SERIES

VERSIONS

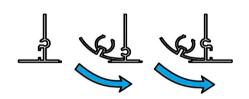


KLN SERIES

AIR THROW ADJUSTMENT


Horizontal throw configuration for high Coandă effect

The throw moves along the ceiling
It guarantees the complete absence of air currents both in heating and cooling.


Vertical throw configuration

The air throw penetrates directly into the room Prevents the formation of layers of hot air when used for heating.

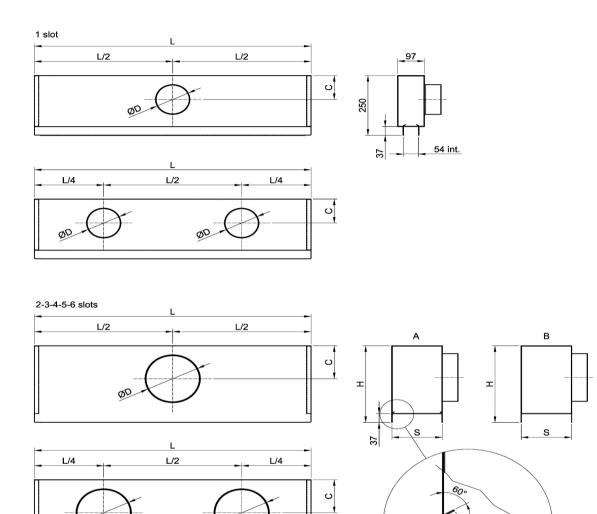
Horizontal throw configuration for high air flow

The throw moves along the ceiling It guarantees the possibility of supply high air flow with minimal levels of pressure drop and spund power

CHOICE OF AIR THROW ORIENTATION:

The horizontal throw represents the most common use of this type of diffuser, both for heating and cooling. The throw follows the ceiling and expands horizontally within the room. This generates a vertical recall of air present in the room, guaranteeing a perfect mixture of air without the presence of air currents within the occupied area.

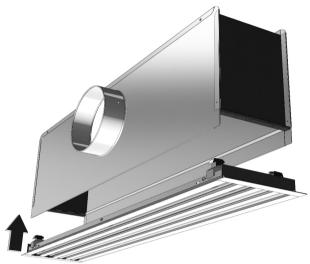
The vertical throw, used when heating, allows to send the hot air directly within the occupied area to hinder the formation of layers of hot air in higher parts of the room caused by the lesser density.


The change of orientation of the air throw is obtained by rotating the deflector blade from an inclined position to a horizontal one, and vice versa.

The blade is rotated from within the diffuser, with the use of a leaver at both extremities of the air slot.

KLN SERIES

STANDARD KLN PLENUM BOXES

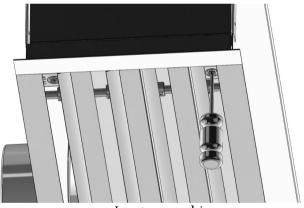


- L Nominal length of the diffuser
- A Version for installation with quick fix connectors (standard version without filter holder)
- B Version for installation with rivets (filter holder, fineline, fitted and with panel versions)

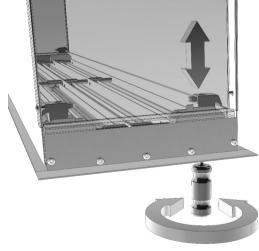
				L ≤ 120	00 mm	1201≤ L ≤	2000 mm	Holes in the
Slots	Н	S	С	connector	ØD	connector	ØD	counterceiling
31018	(mm)	(mm)	(mm)	qty	(mm)	qty	(mm)	KLN standard version
1	250	54	100	1	124	2	124	L+15 x 61
2	250	95	115	1	158	2	158	L+15 x 104
3	320	138	135	1	198	2	198	L+15 x 147
4	320	181	135	1	198	2	198	L+15 x 190
5	370	224	160	1	248	2	248	L+15 x 233
6	370	267	160	1	248	2	248	L+15 x 276

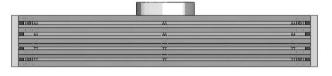
KLN SERIES

INSTALLATION WITH QUICK FIX CONNECTORS STANDARD DIFFUSER

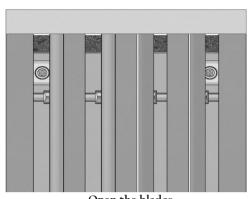

Click

Insert the diffuser into the plenum


The diffuser will remain suspended

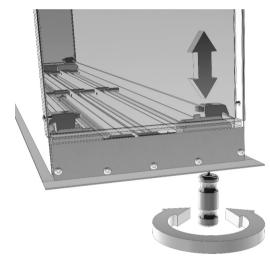

Open the deflectors

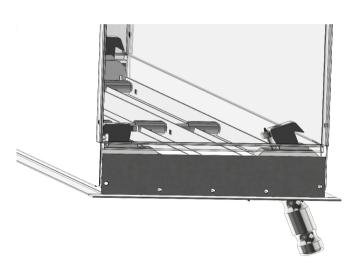
Insert a screwdriver

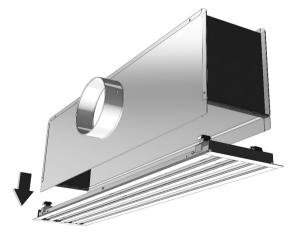

Tight the screws of the quick fix connectors

All done

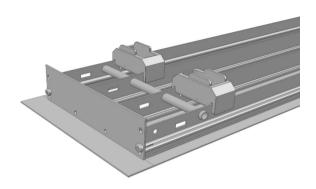
KLN SERIES


REMOVE THE DIFFUSER FIXED WITH QUICK FIX CONNECTORS STANDARD DIFFUSER

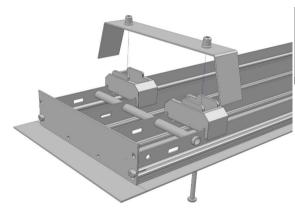

Open the blades

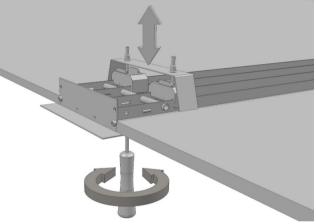

Insert a screwdriver

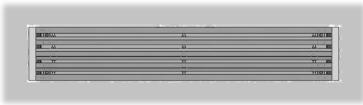
Loose the screws


Off-hook using the screwdriver

Estract the diffuser

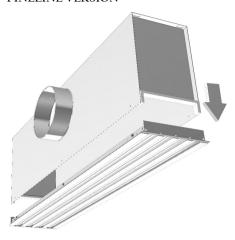

INSTALLATION IN PALSTERBOARD COUNTERCEILING STANDARD DIFFUSER WITHOUT PLENUM

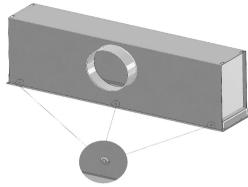

Fix the plastic elements


Insert the screws

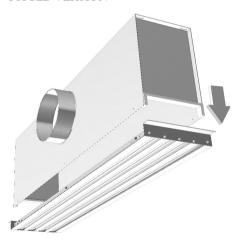
Fix the metallic bridge

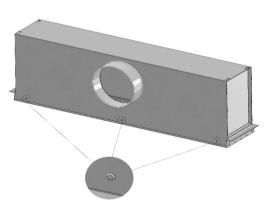
Insert the diffuser into the counterceiling and tight the screws



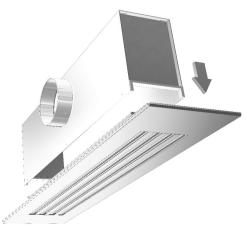

All done

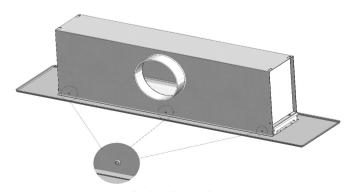
INSTALLATION WITH RIVETS


FINELINE VERSION



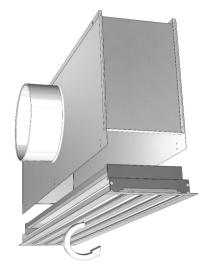
Fix both sides with rivets \emptyset 4,8xl0 aligning them with each pipe placed on the diffuser frame


FITTED VERSION

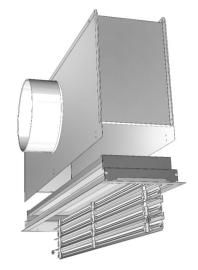


Fix both sides with rivets \emptyset 4,8xl0 aligning them with each pipe placed on the diffuser frame

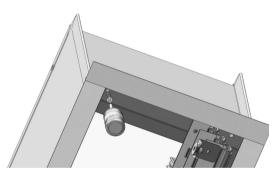
VERSION WITH PANEL

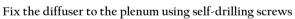


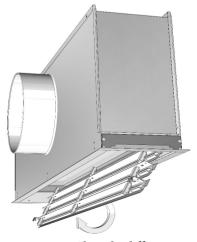
Fix both sides with rivets \emptyset 4,8xl0 aligning them with each pipe placed on the diffuser frame



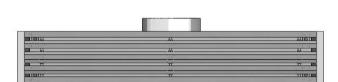
KLN SERIES


INSTALLATION FILTER HOLDER VERSION WITHOUT PANEL

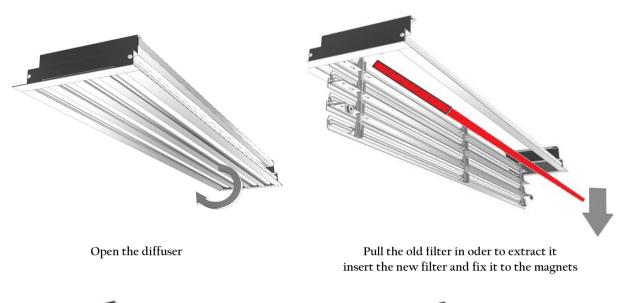


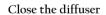

Open the diffuser

Insert the diffuser into the plenum



Close the diffuser


KLN_ENG_21_00.xlsx


All done

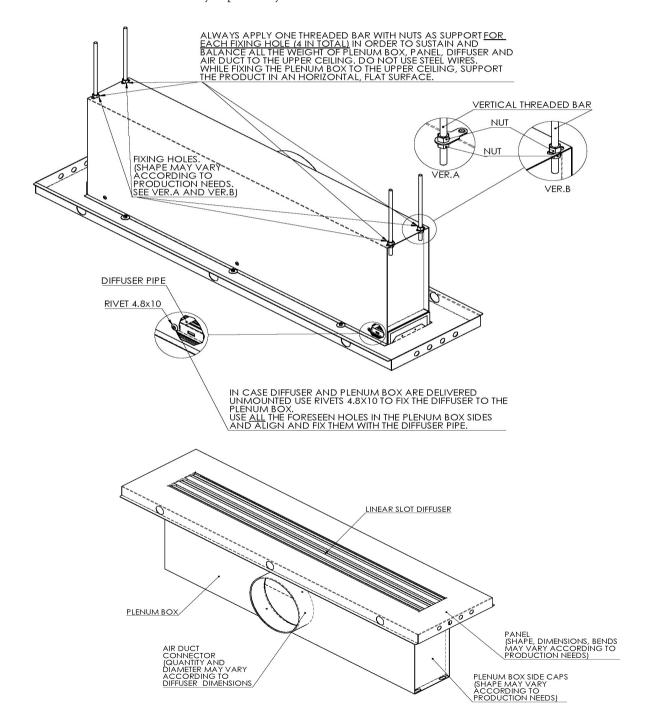
KLN SERIES

CHANGING THE FILTER

All done

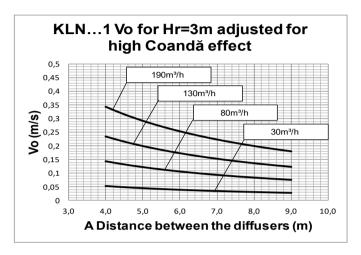
KLN SERIES

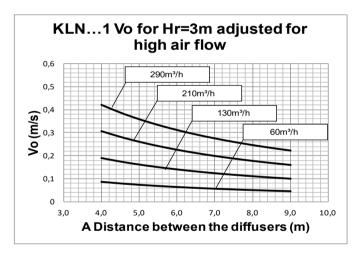
CAUTIONS FOR VERSIONS WITH PANEL

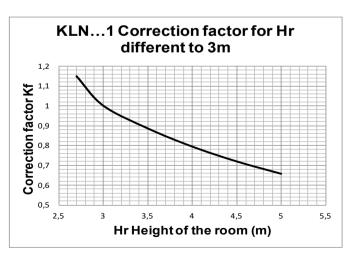

Never apply forces of any kind on panel, this may imply panel deformation.

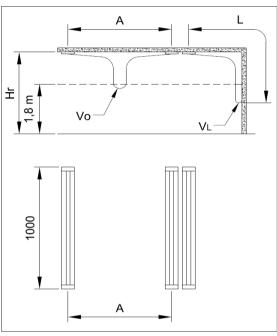
The weight of the panel itself, of the diffuser, of the plenum box and of the air duct has to be supported by plenum box hangers and not by the panel.

Always handle with care. never lift or handle the product using the panel.


To lift or handle the product please hold the plenum box body.


The manufacturer does not assume any responsibility in the event of uncorrect use.

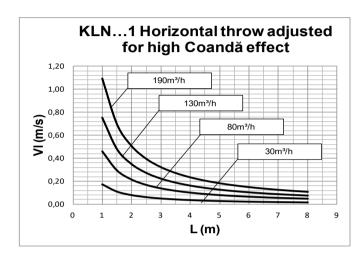


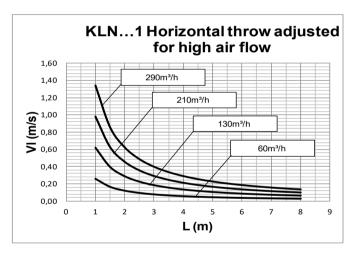

KLN SERIES

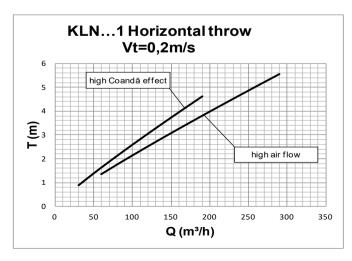
ONE SLOT Vo LIMIT OF THE OCCUPIED ZONE

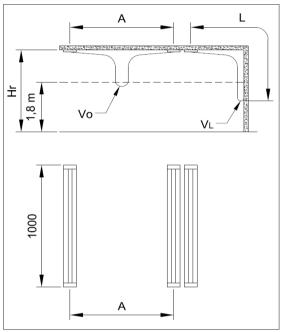
Aeraulic data measured in isothermic conditions for a one meter long diffuser in accordance with the international standard:

ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices


A (m) distance between diffusers Vo (m/s) speed at limit of occupied area


For Hr different to 3m, use the multiplier factor KF:


Vo (h) = Vo x Kf

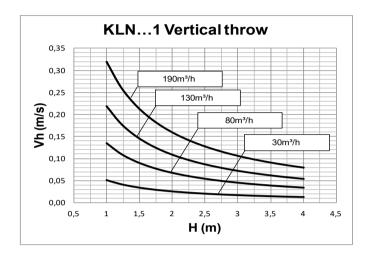


ONE SLOT HORIZONTAL THROW

Aeraulic data measured in isothermic conditions for a one meter long diffuser in accordance with the international standard:

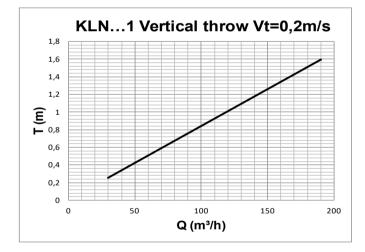
ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices

L (m) horizontal distance in meters from the centre of diffuser


VL (m/s) maximum speed in air stream at distance L T0,2 (m) throw for an isothermal air jet with a Coandă effect for a terminal speed of Vt=0,20m/s.

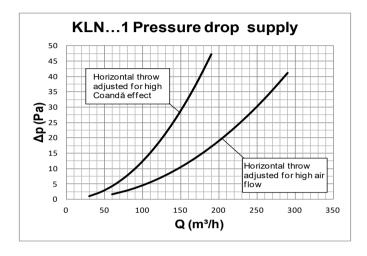
	ΔΤ	x Kf
	-10	0,90
Cooling	-8	0,92
ioli	-6	0,94
၁	-4	0,96
	-2	0,98
	2	1,02
ng	4	1,04
Heating	6	1,06
Не	8	1,08
	10	1,10

KLN SERIES

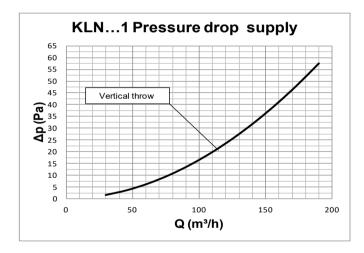

ONE SLOT VERTICAL THROW

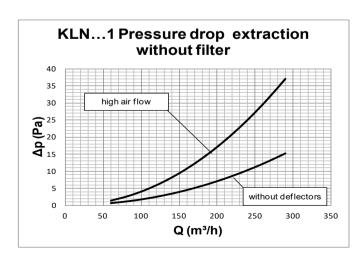
Aeraulic data measured in isothermic conditions for a one meter long diffuser in accordance with the international standard:

ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices.

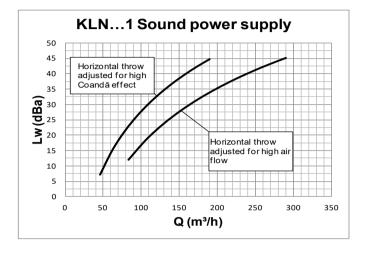

H (m) vertical distance in meters from ceiling Vh (m/s) maximum speed in air stream at distance H T0,2 (m) throw for an isothermal air jet for a terminal speed of Vt=0,20m/s.

	ΔΤ	x Kf
	-10	1,11
ng	-8	1,09
Cooling	-6	1,06
$C_{\mathcal{C}}$	-4	1,04
	-2	1,02
	2	0,98
ng	4	0,96
Heating	6	0,94
	8	0,93
	10	0,91

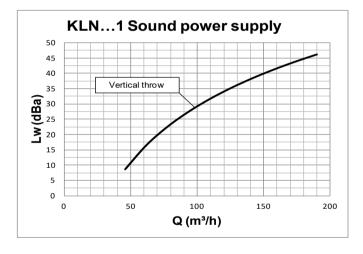




Aeraulic data measured in isothermic conditions for a one meter long diffuser in accordance with the international standard:

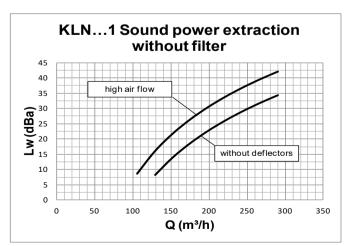

ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices.

ONE SLOT SOUND POWER

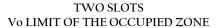


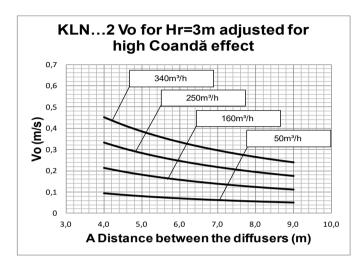
Data measured in reverberating room in accordance with the following international standards:

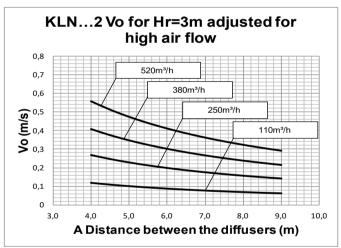
ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms

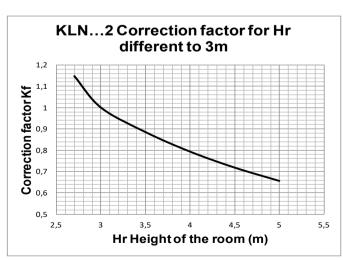

ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.

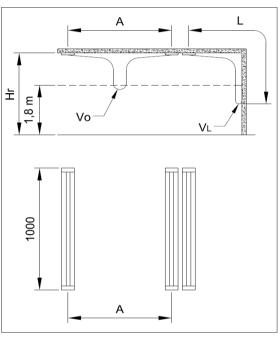
The data shown does not consider the attenuation given by the place of installation. This attenuation is normally included between 6 and 10dBa and is determined by the dimensions of the room, its shape and the arrangements of the furnishings within it.




Correction factor for different length same flow rate per meter of diffuser

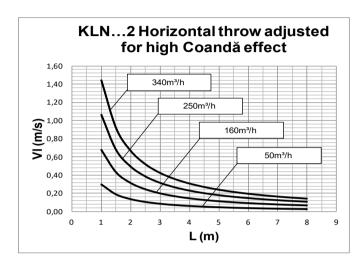

L	+Kf
600	-2,2
800	-1,0
1000	0,0
1200	0,8
1500	1,8
2000	3,0

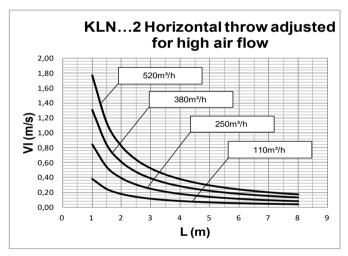


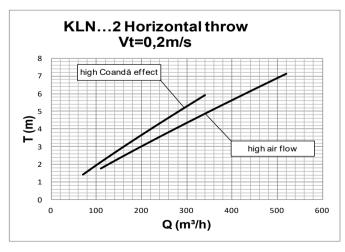


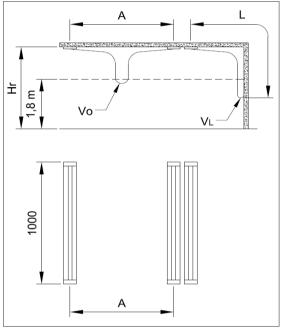
Aeraulic data measured in isothermic conditions for a one meter long diffuser in accordance with the international standard:

ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices.


A (m) distance between diffusers Vo (m/s) speed at limit of occupied area


For Hr different to 3m, use the multiplier factor KF:


Vo (h) = Vo x Kf

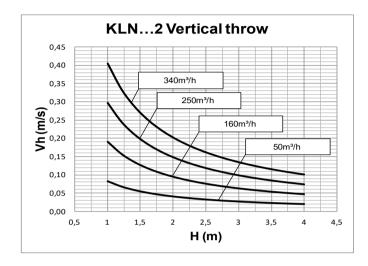

KLN SERIES

TWO SLOTS HORIZONTAL THROW

Aeraulic data measured in isothermic conditions for a one meter long diffuser in accordance with the international standard:

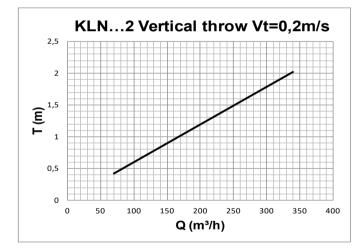
ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices

L (m) horizontal distance in meters from the centre of diffuser


VL (m/s) maximum speed in air stream at distance L T0,2 (m) throw for an isothermal air jet with a Coandă effect for a terminal speed of Vt=0,20m/s.

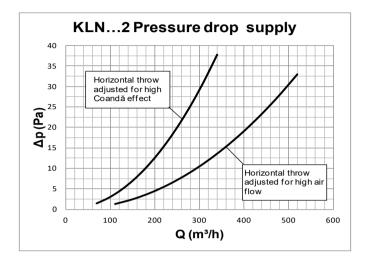
	ΔΤ	x Kf
	-10	0,90
Cooling	-8	0,92
ioli	-6	0,94
၁	-4	0,96
	-2	0,98
	2	1,02
ng	4	1,04
Heating	6	1,06
Не	8	1,08
	10	1,10

KLN SERIES

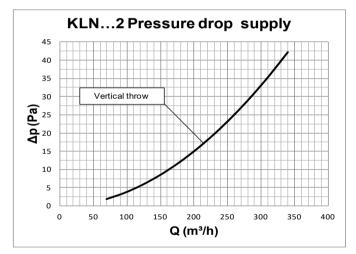

TWO SLOTS VERTICAL THROW

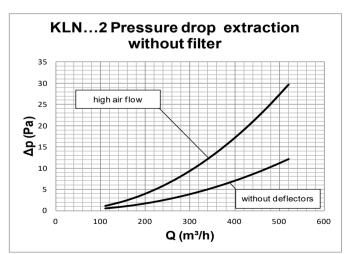
Aeraulic data measured in isothermic conditions for a one meter long diffuser in accordance with the international standard:

ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices.

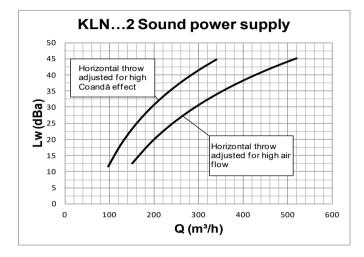

H (m) vertical distance in meters from ceiling Vh (m/s) maximum speed in air stream at distance H T0,2 (m) throw for an isothermal air jet for a terminal speed of Vt=0,20m/s.

	ΔΤ	x Kf
Cooling	-10	1,11
	-8	1,09
ooli	-6	1,06
Со	-4	1,04
	-2	1,02
Heating	2	0,98
	4	0,96
	6	0,94
	8	0,93
	10	0,91

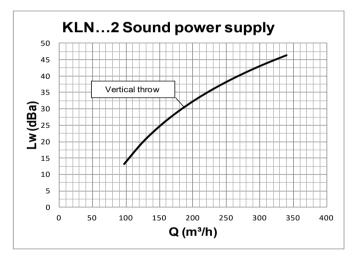

KLN SERIES


TWO SLOTS PRESSURE DROP

Aeraulic data measured in isothermic conditions for a one meter long diffuser in accordance with the international standard:

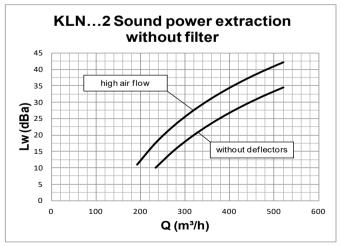

ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices.

TWO SLOTS SOUND POWER

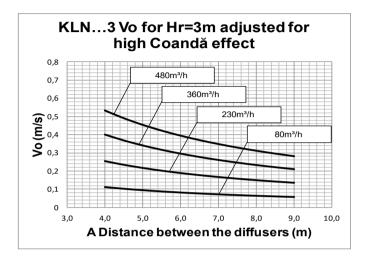


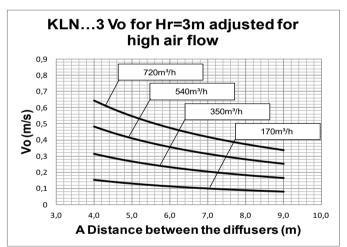
Data measured in reverberating room in accordance with the following international standards:

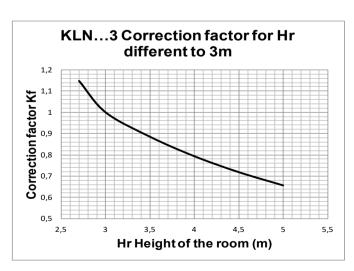
ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms

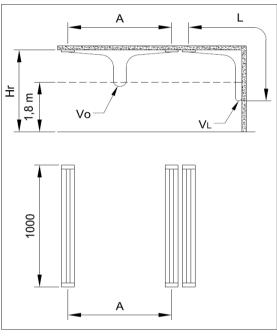

ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.

The data shown does not consider the attenuation given by the place of installation. This attenuation is normally included between 6 and 10dBa and is determined by the dimensions of the room, its shape and the arrangements of the furnishings within it.


Correction factor for different length same flow rate per meter of diffuser


L	+Kf
600	-2,2
800	-1,0
1000	0,0
1200	0,8
1500	1,8
2000	3,0

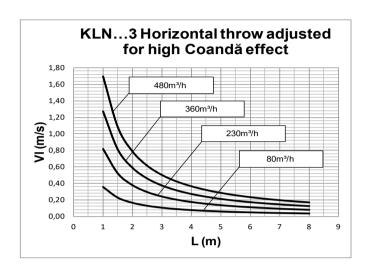


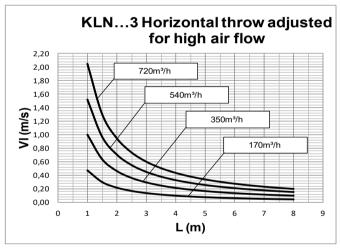


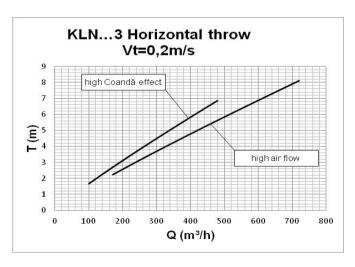
THREE SLOTS Vo LIMIT OF THE OCCUPIED ZONE

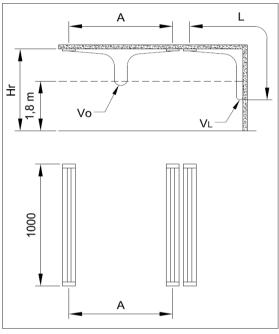
Aeraulic data measured in isothermic conditions for a one meter long diffuser in accordance with the international standard:

ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices


A (m) distance between diffusers Vo (m/s) speed at limit of occupied area


For Hr different to 3m, use the multiplier factor KF:

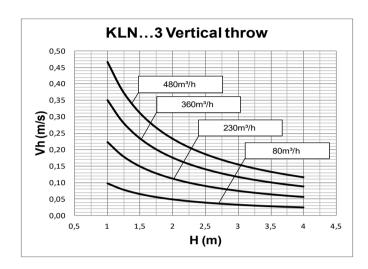

Vo (h) = Vo x Kf



Aeraulic data measured in isothermic conditions for a one meter long diffuser in accordance with the international standard:

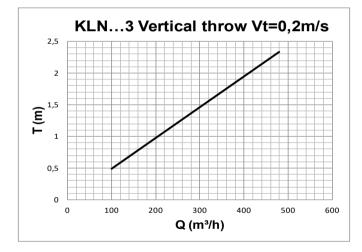
ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices

L (m) horizontal distance in meters from the centre of diffuser


VL (m/s) maximum speed in air stream at distance L T0,2 (m) throw for an isothermal air jet with a Coandă effect for a terminal speed of Vt=0,20m/s.

	ΔΤ	x Kf
	-10	0,90
Cooling	-8	0,92
ioli	-6	0,94
၁	-4	0,96
	-2	0,98
	2	1,02
ng	4	1,04
Heating	6	1,06
Не	8	1,08
	10	1,10

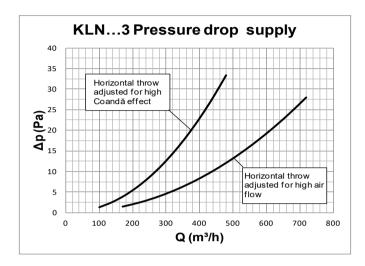
KLN SERIES


THREE SLOTS VERTICAL THROW

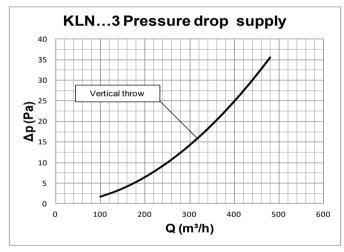
Aeraulic data measured in isothermic conditions for a one meter long diffuser in accordance with the international standard:

ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices.

H (m) vertical distance in meters from ceiling Vh (m/s) maximum speed in air stream at distance H T0,2 (m) throw for an isothermal air jet for a terminal speed of Vt=0,20m/s.

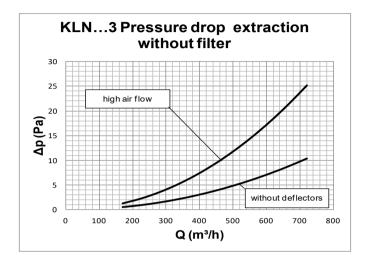


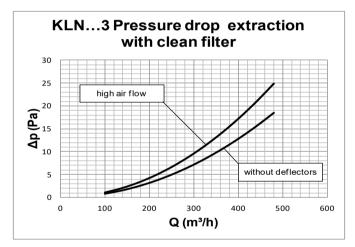
	ΔΤ	x Kf
Cooling	-10	1,11
	-8	1,09
ooli	-6	1,06
Со	-4	1,04
	-2	1,02
Heating	2	0,98
	4	0,96
	6	0,94
	8	0,93
	10	0,91


KLN SERIES

THREE SLOTS PRESSURE DROP - SUPPLY

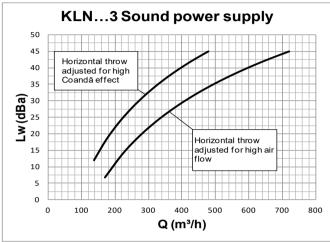
Aeraulic data measured in isothermic conditions for a one meter long diffuser in accordance with the international standard:

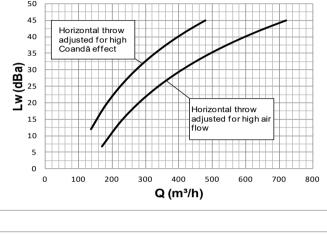

ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices.

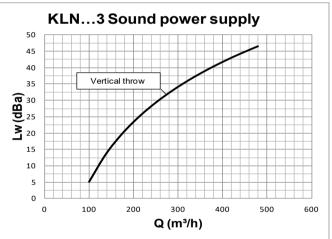

KLN SERIES

THREE SLOTS PRESSURE DROP - EXTRACTION

Aeraulic data measured in isothermic conditions for a one meter long diffuser in accordance with the international standard:


ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices.





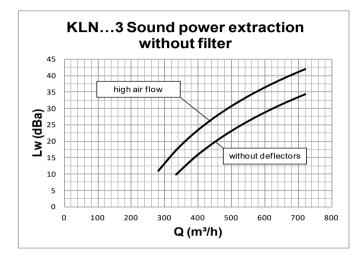
KLN **SERIES**

THREE SLOTS SOUND POWER - SUPPLY

Data measured in reverberating room in accordance with the following international standards:

ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms

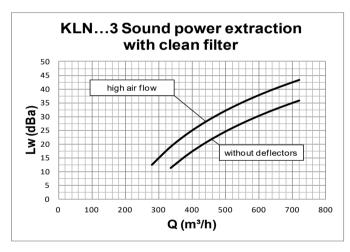
ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.


The data shown does not consider the attenuation given by the place of installation. This attenuation is normally included between 6 and 10dBa and is determined by the dimensions of the room, its shape and the arrangements of the furnishings within it.

> Correction factor for different length same flow rate per meter of diffuser

L	+Kf
600	-2,2
800	-1,0
1000	0,0
1200	0,8
1500	1,8
2000	3,0

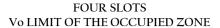
THREE SLOTS SOUND POWER - EXTRACTION

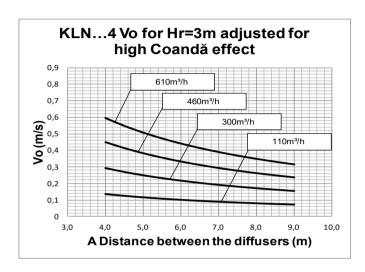


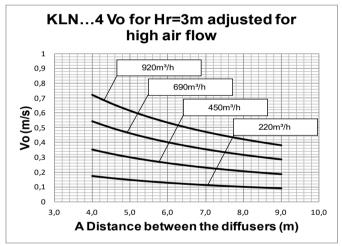
Data measured in reverberating room in accordance with the following international standards:

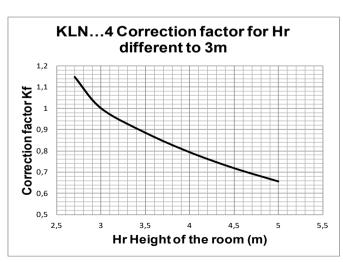
ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms

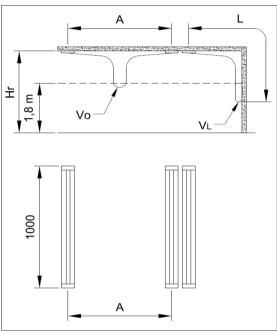
ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.


The data shown does not consider the attenuation given by the place of installation. This attenuation is normally included between 6 and 10dBa and is determined by the dimensions of the room, its shape and the arrangements of the furnishings within it.



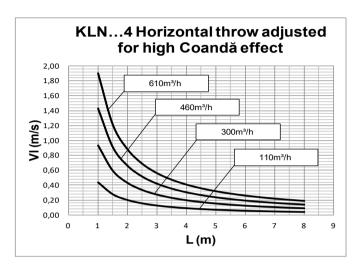

Correction factor for different length same flow rate per meter of diffuser

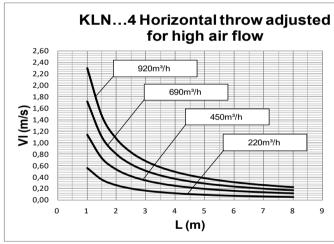

L	+Kf
600	-2,2
800	-1,0
1000	0,0
1200	0,8
1500	1,8
2000	3,0

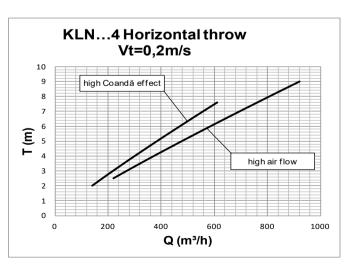


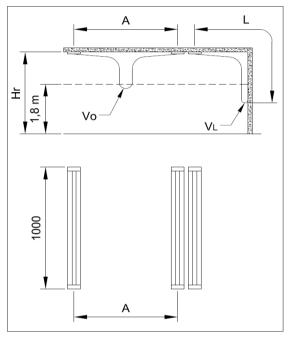
Aeraulic data measured in isothermic conditions for a one meter long diffuser in accordance with the international standard:

ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices


A (m) distance between diffusers Vo (m/s) speed at limit of occupied area


For Hr different to 3m, use the multiplier factor KF:

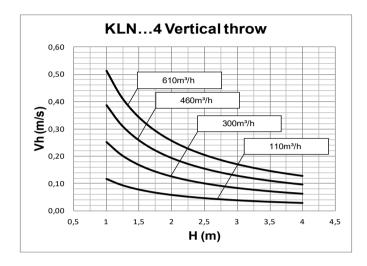

Vo(h) = VoxKf



Aeraulic data measured in isothermic conditions for a one meter long diffuser in accordance with the international standard:

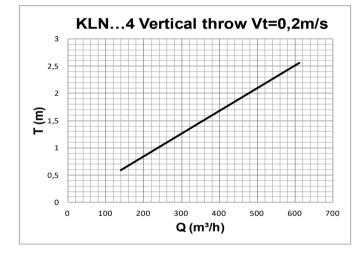
ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices

L (m) horizontal distance in meters from the centre of diffuser


VL (m/s) maximum speed in air stream at distance L T0,2 (m) throw for an isothermal air jet with a Coandă effect for a terminal speed of Vt=0,20m/s.

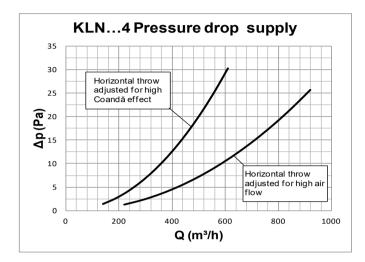
	ΔΤ	x Kf
Cooling	-10	0,90
	-8	0,92
	-6	0,94
	-4	0,96
	-2	0,98
Heating	2	1,02
	4	1,04
	6	1,06
	8	1,08
	10	1,10

KLN SERIES

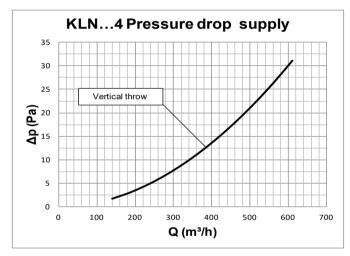

FOUR SLOTS VERTICAL THROW

Aeraulic data measured in isothermic conditions for a one meter long diffuser in accordance with the international standard:

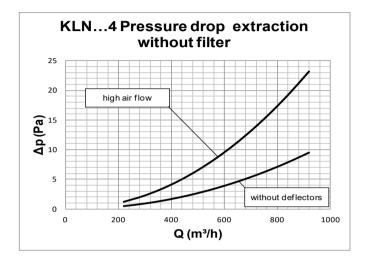
ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices.


H (m) vertical distance in meters from ceiling Vh (m/s) maximum speed in air stream at distance H T0,2 (m) throw for an isothermal air jet for a terminal speed of Vt=0,20m/s.

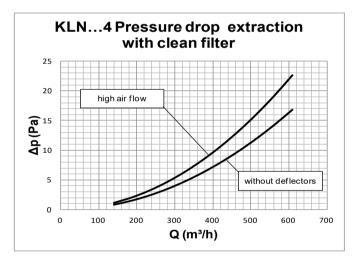
	ΔΤ	x Kf
Cooling	-10	1,11
	-8	1,09
	-6	1,06
	-4	1,04
	-2	1,02
Heating	2	0,98
	4	0,96
	6	0,94
	8	0,93
	10	0,91

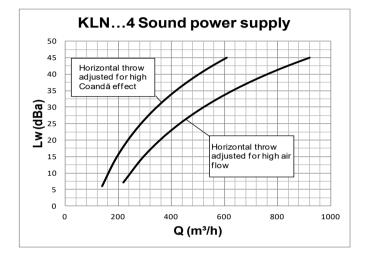


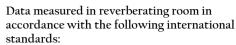
FOUR SLOTS PRESSURE DROP - SUPPLY


Aeraulic data measured in isothermic conditions for a one meter long diffuser in accordance with the international standard:

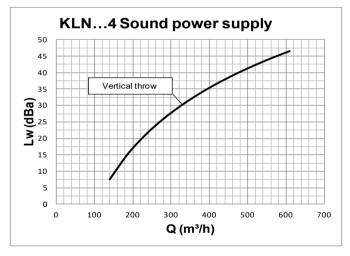
ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices.




Aeraulic data measured in isothermic conditions for a one meter long diffuser in accordance with the international standard:


ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices.

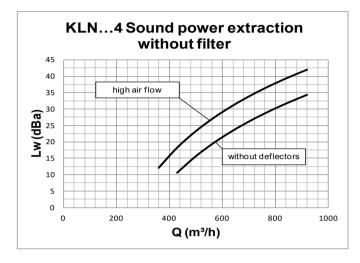
FOUR SLOTS SOUND POWER - SUPPLY



ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms

ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.

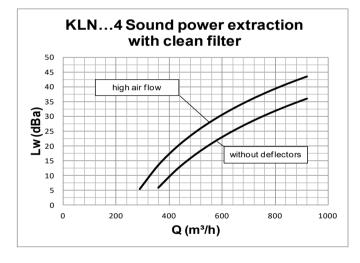
The data shown does not consider the attenuation given by the place of installation. This attenuation is normally included between 6 and 10dBa and is determined by the dimensions of the room, its shape and the arrangements of the furnishings within it.



Correction factor for different length same flow rate per meter of diffuser

L	+Kf
600	-2,2
800	-1,0
1000	0,0
1200	0,8
1500	1,8
2000	3,0

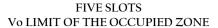
FOUR SLOTS SOUND POWER - EXTRACTION

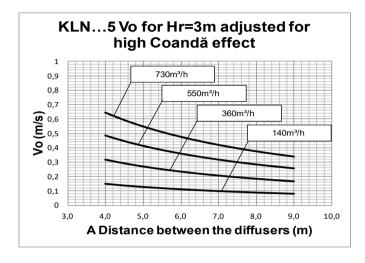


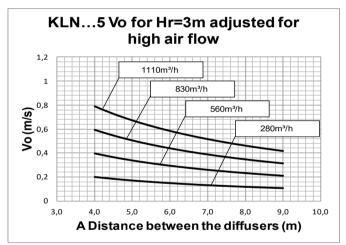
Data measured in reverberating room in accordance with the following international standards:

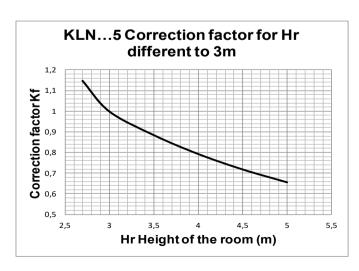
ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms

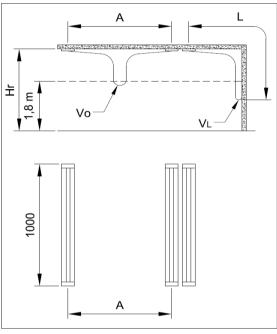
ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.


The data shown does not consider the attenuation given by the place of installation. This attenuation is normally included between 6 and 10dBa and is determined by the dimensions of the room, its shape and the arrangements of the furnishings within it.



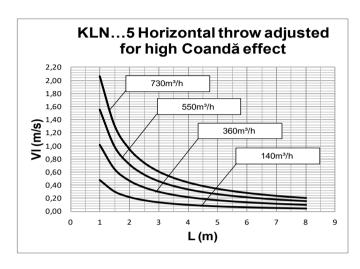

Correction factor for different length same flow rate per meter of diffuser

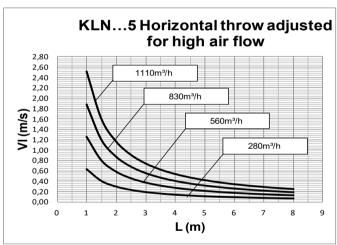

L	+Kf
600	-2,2
800	-1,0
1000	0,0
1200	0,8
1500	1,8
2000	3,0

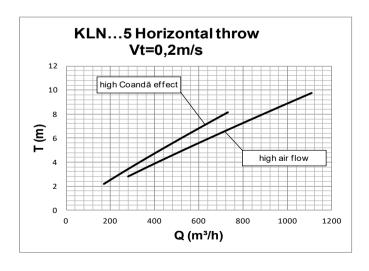


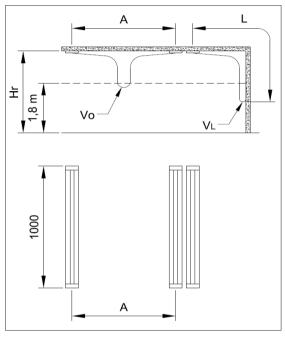
Aeraulic data measured in isothermic conditions for a one meter long diffuser in accordance with the international standard:

ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices


A (m) distance between diffusers Vo (m/s) speed at limit of occupied area


For Hr different to 3m, use the multiplier factor KF:


Vo(h) = VoxKf

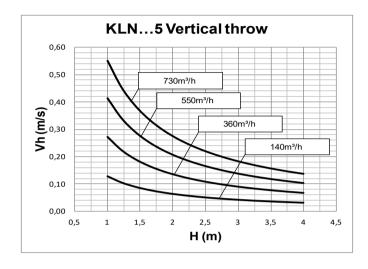


Aeraulic data measured in isothermic conditions for a one meter long diffuser in accordance with the international standard:

ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices

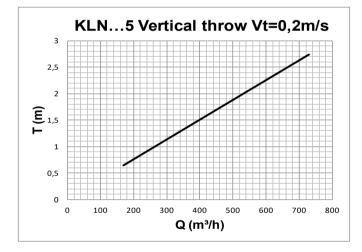
L (m) horizontal distance in meters from the centre of diffuser

VL (m/s) maximum speed in air stream at distance L T0,2 (m) throw for an isothermal air jet with a Coandă effect for a terminal speed of Vt=0,20m/s.


Correction factor for non isotermal conditions

	ΔΤ	x Kf
	-10	0,90
ng	-8	0,92
Cooling	-6	0,94
ပိ	-4	0,96
	-2	0,98
	2	1,02
ng	4	1,04
Heating	6	1,06
	8	1,08
	10	1,10

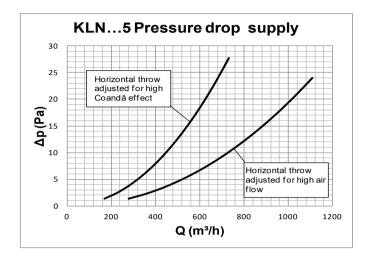
KLN SERIES


FIVE SLOTS VERTICAL THROW

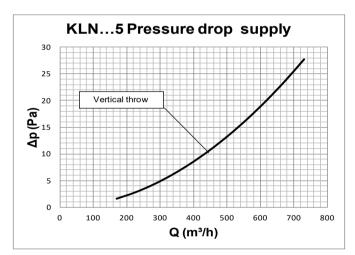
Aeraulic data measured in isothermic conditions for a one meter long diffuser in accordance with the international standard:

ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices.

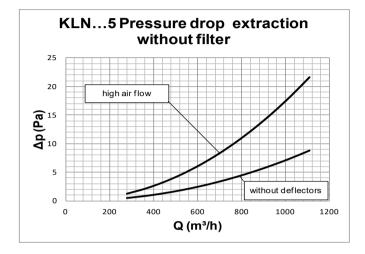
H (m) vertical distance in meters from ceiling Vh (m/s) maximum speed in air stream at distance H T0,2 (m) throw for an isothermal air jet for a terminal speed of Vt=0,20m/s.


Correction factor for non isotermal conditions

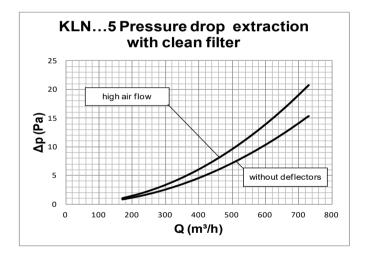
	ΔT	x Kf
	-10	1,11
ng	-8	1,09
Cooling	-6	1,06
ŭ	-4	1,04
	-2	1,02
	2	0,98
ng	4	0,96
Heating	6	0,94
	8	0,93
	10	0,91


KLN **SERIES**

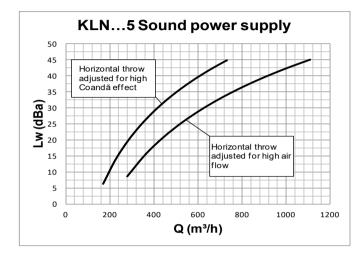
FIVE SLOTS PRESSURE DROP - SUPPLY


Aeraulic data measured in isothermic conditions for a one meter long diffuser in accordance with the international standard:

ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal

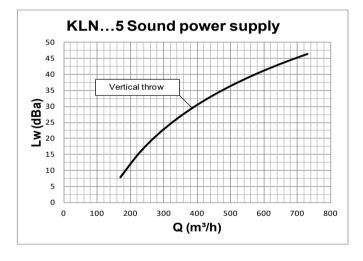


Aeraulic data measured in isothermic conditions for a one meter long diffuser in accordance with the international standard:


ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices.

KLN SERIES

FIVE SLOTS SOUND POWER - SUPPLY

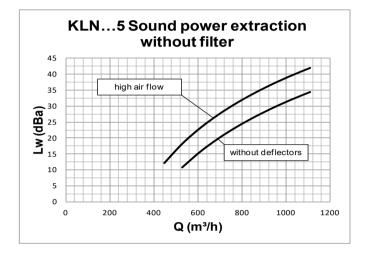


Data measured in reverberating room in accordance with the following international standards:

ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms

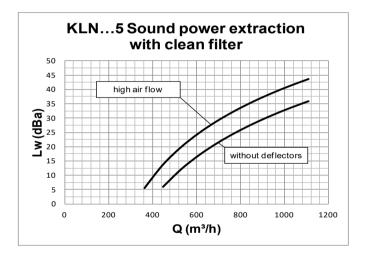
ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.

The data shown does not consider the attenuation given by the place of installation. This attenuation is normally included between 6 and 10dBa and is determined by the dimensions of the room, its shape and the arrangements of the furnishings within it.



Correction factor for different length same flow rate per meter of diffuser

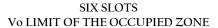
L	+Kf
600	-2,2
800	-1,0
1000	0,0
1200	0,8
1500	1,8
2000	3,0

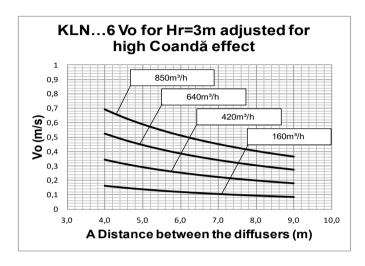


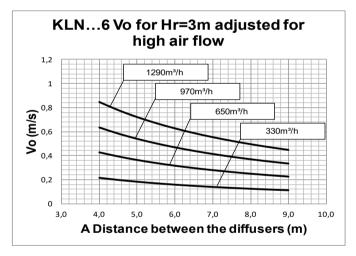
Data measured in reverberating room in accordance with the following international standards:

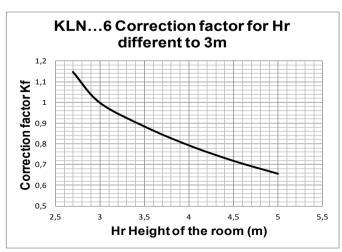
ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms

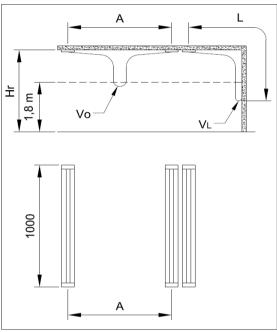
ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.


The data shown does not consider the attenuation given by the place of installation. This attenuation is normally included between 6 and 10dBa and is determined by the dimensions of the room, its shape and the arrangements of the furnishings within it.



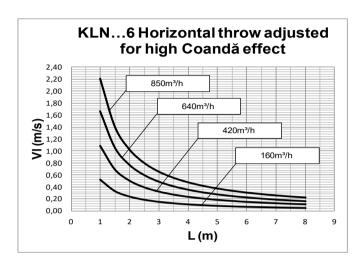

Correction factor for different length same flow rate per meter of diffuser

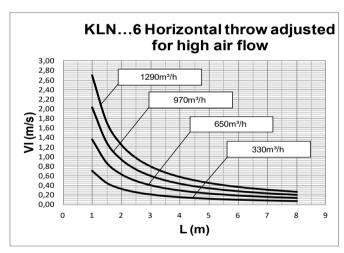

L	+Kf
600	-2,2
800	-1,0
1000	0,0
1200	0,8
1500	1,8
2000	3,0



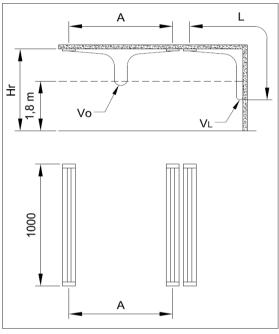
Aeraulic data measured in isothermic conditions for a one meter long diffuser in accordance with the international standard:

ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices


A (m) distance between diffusers Vo (m/s) speed at limit of occupied area


For Hr different to 3m, use the multiplier factor KF:

Vo (h) = Vo x Kf



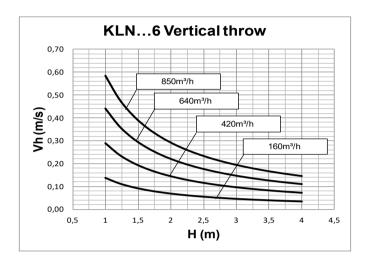
SIX SLOTS HORIZONTAL THROW

Aeraulic data measured in isothermic conditions for a one meter long diffuser in accordance with the international standard:

ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices.

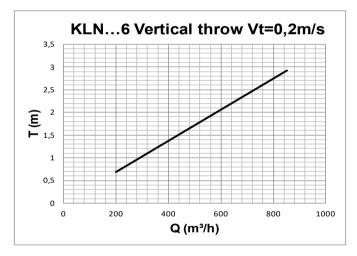
L (m) horizontal distance in meters from the centre of diffuser

VL (m/s) maximum speed in air stream at distance L T0,2 (m) throw for an isothermal air jet with a Coandă effect for a terminal speed of Vt=0,20m/s.


Correction factor for non isotermal conditions

	ΔΤ	x Kf
Cooling	-10	0,90
	-8	0,92
	-6	0,94
	-4	0,96
	-2	0,98
Heating	2	1,02
	4	1,04
	6	1,06
	8	1,08
	10	1,10

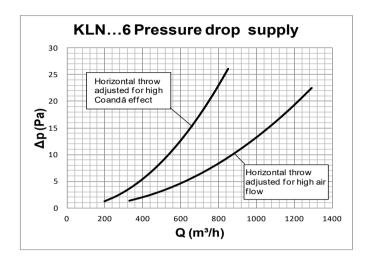
KLN SERIES


SIX SLOTS VERTICAL THROW

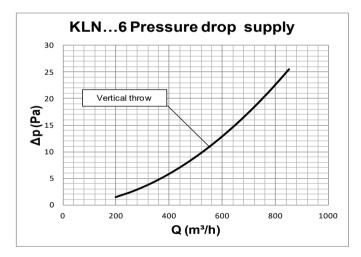
Aeraulic data measured in isothermic conditions for a one meter long diffuser in accordance with the international standard:

ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal devices.

H (m) vertical distance in meters from ceiling Vh (m/s) maximum speed in air stream at distance H T0,2 (m) throw for an isothermal air jet for a terminal speed of Vt=0,20m/s.


Correction factor for non isotermal conditions

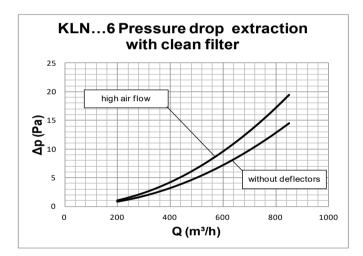
	ΔΤ	x Kf
	-10	1,11
ng	-8	1,09
Cooling	-6	1,06
Сс	-4	1,04
	-2	1,02
Heating	2	0,98
	4	0,96
	6	0,94
	8	0,93
	10	0,91

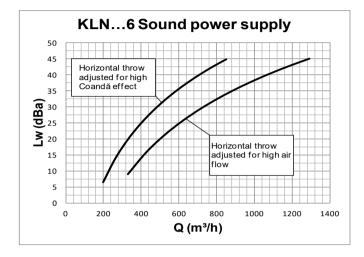

KLN SERIES

SIX SLOTS PRESSURE DROP - SUPPLY

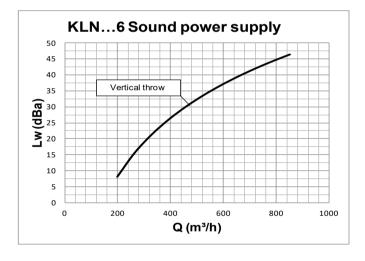
Aeraulic data measured in isothermic conditions for a one meter long diffuser in accordance with the international standard:

ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal




Aeraulic data measured in isothermic conditions for a one meter long diffuser in accordance with the international standard:

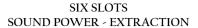
ISO 5219 1984: Air distribution and air diffusion -Laboratory. Aerodynamic testing and rating of air terminal

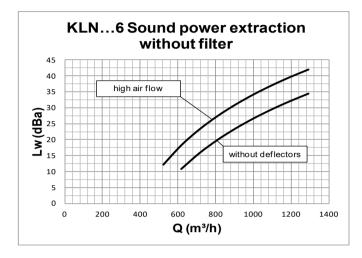


Data measured in reverberating room in accordance with the following international standards:

ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms

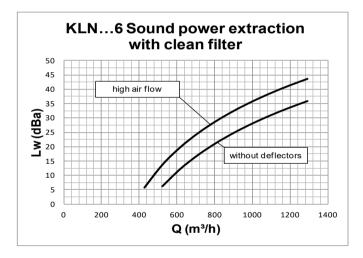
ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.


The data shown does not consider the attenuation given by the place of installation. This attenuation is normally included between 6 and 10dBa and is determined by the dimensions of the room, its shape and the arrangements of the furnishings within it.



Correction factor for different length same flow rate per meter of diffuser

L	+Kf
600	-2,2
800	-1,0
1000	0,0
1200	0,8
1500	1,8
2000	3,0

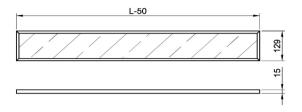


Data measured in reverberating room in accordance with the following international standards:

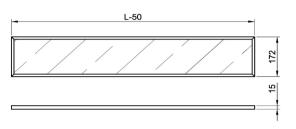
ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms

ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.

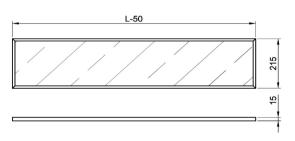
The data shown does not consider the attenuation given by the place of installation. This attenuation is normally included between 6 and 10dBa and is determined by the dimensions of the room, its shape and the arrangements of the furnishings within it.

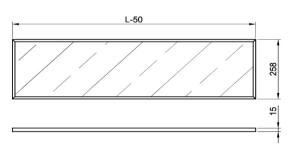


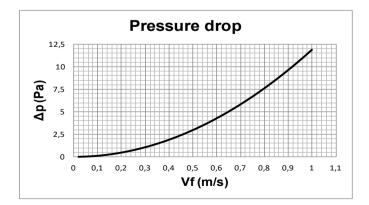
Correction factor for different length same flow rate per meter of diffuser


L	+Kf
600	-2,2
800	-1,0
1000	0,0
1200	0,8
1500	1,8
2000	3,0

KLN SERIES


FILTERS


Filter for 3 slots diffuser
Filtering class G3.
Polyester fiber material.
Galvanized steel containment frame.
Metal net on both sides.


Filter for 4 slots diffuser
Filtering class G3.
Polyester fiber material.
Galvanized steel containment frame.
Metal net on both sides.

Filter for 5 slots diffuser
Filtering class G3.
Polyester fiber material.
Galvanized steel containment frame.
Metal net on both sides.

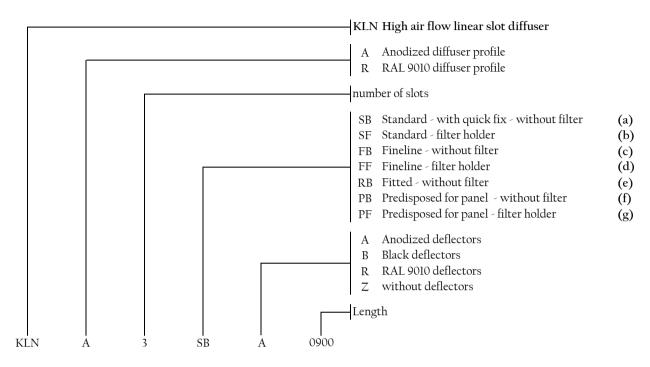
Filter for 6 slots diffuser
Filtering class G3.
Polyester fiber material.
Galvanized steel containment frame.
Metal net on both sides.

Vf = frontal velocity

B = length of the filter (mm)

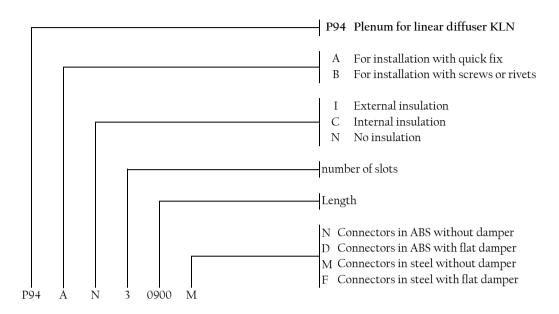
H = height of the filter (mm)

 $Q = air flow (m^3/h)$


 $S = B \times H / 1000000$

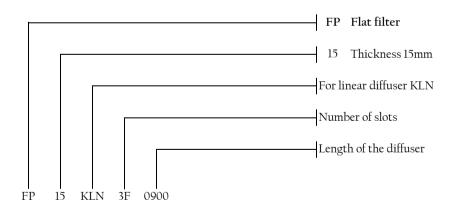
Vf = Q / 3600 / S

KLN SERIES


CODES

- (a) From 1 slot up to 6 slots Length from 300mm up to 2000mm Plenum P94A Plenum fixing with quick fix
- (b) From 3 slots up to 6 slots Length from 300mm up to 1200mm
 Plenum P94B Plenum fixing with screws Filter to order separately
- (c) From 1 slot up to 6 slots Length from 300mm up to 2000mm Plenum P94B Plenum fixing with rivets
- (d) From 3 slots up to 6 slots Length from 300mm up to 1200mm
 Plenum P94B Plenum fixing with screws Filter to order separately
- (e) From 1 slot up to 6 slots Length from 300mm up to 2000mm Plenum P94B Plenum fixing with rivets
- (f) From 3 slots up to 6 slots Size of the panel on request Panel to order separately Diffuser length from 300mm up to 1200mm Plenum P94B Plenum fixing with rivets
- (g) From 3 slots up to 6 slots Size of the panel on request Panel to order separately
 Diffuser length from 300mm up to 1200mm Plenum P94B Plenum fixing with rivets
 Filter to order separately

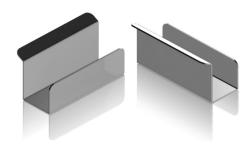
KLN SERIES


CODES - INSPECTION AND MAINTENANCE

As standard the plenum box is supplied separated from the diffuser

For the plenum box mounted on the diffuer use code:

 $KLN\text{-}PLNMONT \qquad \text{mounting of the plenum box on the diffuser}$

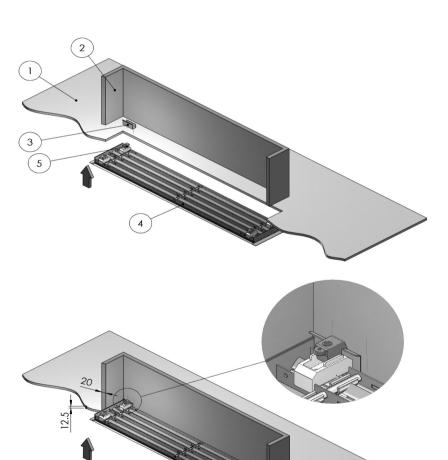

INSPECTION AND MAINTENANCE:

We recommend to check the filter condition at least every six months.

Replace the filter if necessary and dispose of in accordance to local legislation separating the metal structure from the filter media.

KLN SERIES

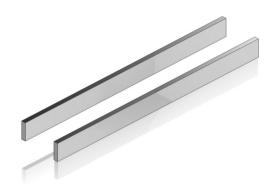
ACCESSORIES SPARE PARTS

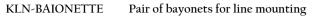


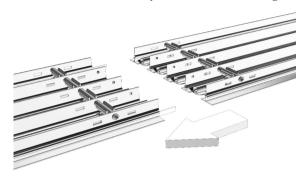
KLN-SW2 Pair of brackets for quick fix

Brackets KLN-SW2 let you use the quick fix method to install the diffuser KLN with the plenum (not supplied by MP3) made on site with 20mm thick sandwich panel in plasterboard ceilings thickness 12.5mm thick.

Diffuser length up to 1500mm: order two pairs of brackets. Diffuser length more than 1500mm: order three pairs of brackets.

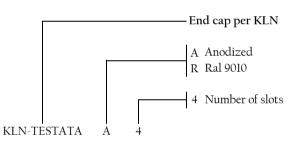

It is recommended to attach the brackets with the same sealant used for joining panels.

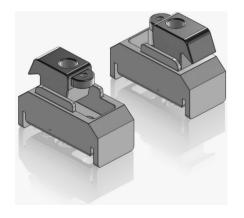


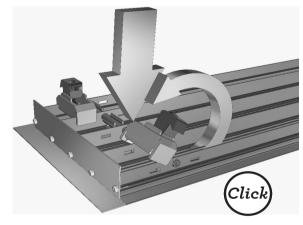

- 1 Coumterceiling in plasterboard 12,5mm thick
- 2 Sandwich panel 20 mm thick
- 3 Bracket for quick fix
- 4 KLN diffuser
- 5 Quick fix

KLN SERIES

ACCESSORIES SPARE PARTS







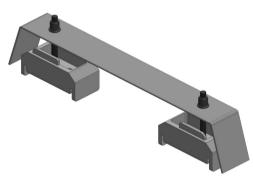
KLN-TESTATA Standard end cap in aluminum



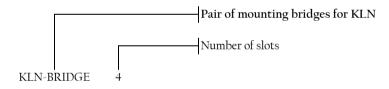
KLN-QF2 Couple of Quick fix hooks

KLN SERIES

ACCESSORIES SPARE PARTS



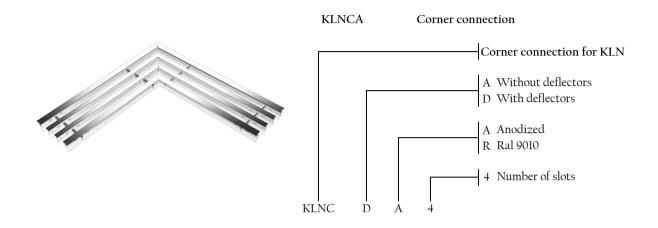
 $KLN\text{-}BRIDGE \quad \text{Pair of mounting bridges for installation}$

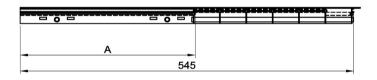

in plasterboard counterceilings

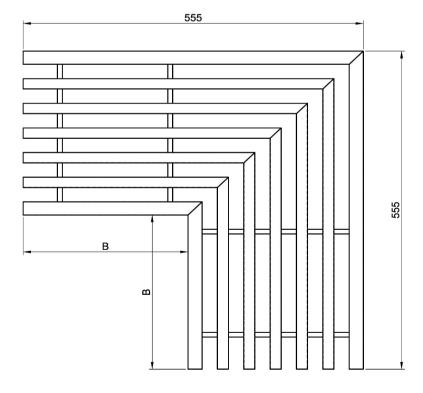
without plenum

from 1 up to 2 slots one screw

from 3 up to 6 slots two screws

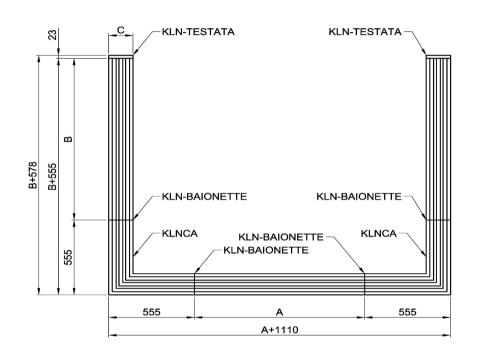

Only for installation witout plenum


Only for standard version KLN ... SB (no filterholder, no panel)

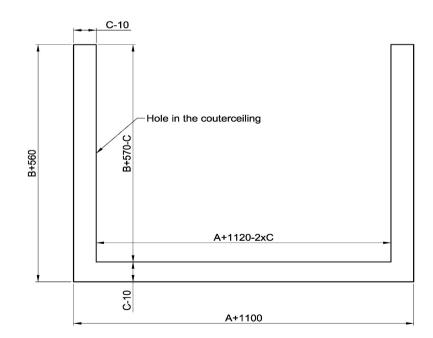

For diffusers with a length equal or higher to 1650 mm it is suggested to use two pairs of mounting bridges

KLN SERIES

ACCESSORIES SPARE PARTS



number of	A	В
Slots	mm	mm
1	501	484
2	458	441
3	415	398
4	372	355
5	329	312
6	286	269



ACCESSORIES SPARE PARTS

Example of installation in continuos lines with corners

Number of slots	C (mm)
1	71
2	114
3	157
4	200
5	243
6	286

